
Common LISP Tutorial
(Part 2)

CLISP Download
https://sourceforge.net/projects/clisp/

IPPL Course Materials (UST sir only)
Download

https://silp.iiita.ac.in/wordpress/?page_id=494

https://sourceforge.net/projects/clisp/
https://silp.iiita.ac.in/wordpress/?page_id=494

Lambda Expressions:
• lambda is the symbol for an anonymous function, a function without

a name.
(lambda (arg-variables...)

 [interactive-declaration]

 body-forms...)

((lambda (x y) (* x y)) 2 3) ➔ 6

(mapcar (lambda (x) (* x x)) '(2 3 1 6)) ➔ ?

Hash Table:
• The hash table data structure represents a collection of key-and-value pairs that

are organized based on the hash code of the key. It uses the key to access the
elements in the collection.

• The make-hash-table function is used for creating a hash table. Syntax for this
function is:

• make-hash-table &key :test :size :rehash-size :rehash-threshold
:test argument determines how keys are compared - it should have one of three
values #'eq, #'eql, or #'equal. If not specified, eql is assumed.
:size argument sets the initial size of the hash table.
:rehash-size argument specifies how much to increase the size of the hash table
when it becomes full.
:rehash-threshold argument specifies how full the hash table can get before it must
grow.
The make-hash-table function can be called with no arguments.

• The gethash function retrieves an item from the hash table by searching for its key. If it
does not find the key, then it returns nil.

gethash key hash-table &optional default

• The remhash function removes any entry for a specific key in hash-table.

remhash key hash-table

(setq empList (make-hash-table))

(setf (gethash '001 empList) '(lisp prg.))

(setf (gethash '002 empList) '(java prg.))

(setf (gethash '003 empList) '(prolog prg.))

(print (gethash '001 empList))

(print (gethash '002 empList))

(print (gethash '003 empList))

 (remhash '003 empList)

(print (gethash '003 empList))

(terpri)

(maphash #'(lambda (k v) (format t "~a => ~a~%" k v)) empList)

Packages:
•In programming languages, a
package is designed for
providing a way to keep one
set of names separate from
another. The symbols
declared in one package will
not conflict with the same
symbols declared in another.
This way packages reduce
the naming conflicts
between independent code
modules.

(make-package :A) (make-package :B) (make-package :C)

(in-package A)

(defun hello () (write-line "Hello! This is A line"))

(in-package B)

(defun hello () (write-line "Hello! This is B line"))

(in-package C)

(defun hello () (write-line "Hello! This is C line"))

(in-package A)

(hello)

(in-package B)

(hello)

(in-package C)

(hello)

(delete-package C)

(in-package C)

(hello)

File Write:
• The open function is used to create a new file or to open an existing file.

(open “c:/clisp/myfile.txt”)

• The with-open-file allows reading or writing into a file, using the stream
variable associated with the read/write transaction. Once the job is done, it
automatically closes the file. It is extremely convenient to use.

 (with-open-file (stream "c:/clisp/myfile.txt" :direction :output)

 (format stream "Welcome to PPL class!")

 (terpri stream)

 (format stream "This is a demo file.")

)

File Read:

(let ((in (open "c:/clisp/myfile.txt" :if-does-not-exist nil)))
(when in

 (loop for line = (read-line in nil)

 while line do (format t "~a~%" line))

 (close in))

)

LISP – CLOS (Common Lisp Object
System)

• In CLOS, Object-oriented system is based on the concept of "objects",
which may contain data, in the form of fields, often known as slots;
and code, in the form of procedures, often known as functions.

•Class: A class is a "template" that describes the structure and
behavior of its instances. Every kind of Lisp data is an instance of
some class. There are built-in classes, such as the class of integers, or
the class of strings. You can use the function class-of to determine the
class of some Lisp object.

(class-of 5) => #<BUILT-IN-CLASS INTEGER>

 (class-of “IIITA") => #<BUILT-IN-CLASS STRING>

Defining Classes:
(defclass name (superclasses)

 (slot-description*)

 class-options*)

slot-description has the form (slot-name slot-option*). slot-option can be:

 :initarg - a keyword what would be used to supply slot values when an
instance of a class is created.

 :initform - if no value for a slot was supplied, it would be initialized with
the result of evaluating initform. If there is no initform, an error would be
signaled.

 :reader - specifies a function to read a particular slot.

 :writer - specifies a function to write to a particular slot.

 :accessor - specifies a function to read and write a value of a slot.

Example:
(defclass book ()

 ((author :initform "" :accessor author)

 (year :initform 0 :accessor year))

 (:documentation "Describes a book"))

(setf *my-book1* (make-instance 'book))

(print (class-of *my-book1*))

(print (author *my-book1*))

(print (year *my-book1*))

(setf (slot-value *my-book1* 'year) 1995)

(print (year *my-book1*))

(defclass book2 ()

 ((author :initarg :author :accessor author)

 (year :initarg :year :accessor year))

 (:documentation "Describes a book"))

(setf *my-book2*(make-instance 'book2

 :author "ABC"

 :year 1995))

(print (author *my-book2*))

(setf (slot-value *my-book2* 'author) "AAA")

(print (author *my-book2*))

Class function:
(defclass box ()

 ((length :accessor box-length)

 (breadth :accessor box-breadth)

 (height :accessor box-height)

 (volume :reader volume)

)

)

; method calculating volume

(defmethod volume ((object box))

 (* (box-length object) (box-breadth
object)(box-height object))

)

;setting the values

(setf item (make-instance 'box))

(setf (box-length item) 10)

(setf (box-breadth item) 10)

(setf (box-height item) 5)

; displaying values

(format t "Length of the Box is ~d~%"
(box-length item))

(format t "Breadth of the Box is ~d~%"
(box-breadth item))

(format t "Height of the Box is ~d~%"
(box-height item))

(format t "Volume of the Box is ~d~%"
(volume item))

Inheritance:
(defclass box ()
 ((length :accessor box-length)
 (breadth :accessor box-breadth)
 (height :accessor box-height)
 (volume :reader volume)
)
)
; method calculating volume
(defmethod volume ((object box))
 (* (box-length object) (box-breadth
object)(box-height object))
)
;wooden-box class inherits the box class
(defclass wooden-box (box)
((price :accessor box-price)))

 ;setting the values
(setf item (make-instance 'wooden-box))
(setf (box-length item) 10)
(setf (box-breadth item) 10)
(setf (box-height item) 5)
(setf (box-price item) 1000)
; displaying values
(format t "Length of the Wooden Box is
~d~%" (box-length item))
(format t "Breadth of the Wooden Box is
~d~%" (box-breadth item))
(format t "Height of the Wooden Box is
~d~%" (box-height item))
(format t "Volume of the Wooden Box is
~d~%" (volume item))
(format t "Price of the Wooden Box is ~d~%"
(box-price item))

ELIZA:

•ELIZA is an natural language
processing computer program
created from 1964 to 1966 at
the MIT Artificial Intelligence
Laboratory by Joseph
Weizenbaum. Eliza simulated
conversation by using a 'pattern
matching' and substitution
methodology that gave users an
illusion of understanding. ELIZA
was one of the first chatterbots,
but was also regarded as one of
the first programs capable of
passing the Turing Test.

