PROLOG
PROGRAMMING
FOR ARTIFICIAL
INTELLIGENCE

INTERNATIONAL COMPUTER SCIENCE SERIES

Consulting editors A D McGettrick University of Strathclyde

J van Leeuwen University of Utrecht

OTHER TITLES IN THE SERIES

Programming in Ada (2nd Edn.) J G P Barnes

Computer Science Applied to Business Systems M J R Shave and K N Bhaskar
Software Engineering (2nd Edn.) I Sommerville

A Structured Approach to FORTRAN 77 Programming T M R Ellis

The Cambridge Distributed Computing System R M Needham and A J Herbert
An Introduction to Numerical Methods with Pascal L V Atkinson and P J Harley
The UNIX System S R Bourne

Handbook of Algorithms and Data Structures G H Gonnet

Office Automation: Concepts, Technologies and Issues R A Hirschheim
Microcomputers in Engineering and Science ~ J F Craine and G R Martin

UNIX for Super-Users E Foxley

Software Specification Techniques N Gehani and A D McGettrick (eds.)
Introduction to Expert Systems P Jackson

Data Communications for Programmers M Purser

Local Area Network Design A Hopper, S Temple and R C Williamson
Modula-2: Discipline & Design A H J Sale

PROLOG
PROGRAMMING
FOR ARTIFICIAL
INTELLIGENCE

lvan Bratko

E. Kardelj University - J. Stefan Institute
Yugoslavia

A
\ A4
ADDISON-WESLEY
PUBLISHING
COMPANY

Wokingham, England - Reading, Massachusetts - Menlo Park, California
Don Mills, Ontario - Amsterdam - Sydney - Singapore - Tokyo
Madrid - Bogota - Santiago -San Juan

© 1986 Addison-Wesley Publishers Limited
© 1986 Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without prior written permission of the
publisher.

Cover graphic by kind permission of Dicomed (UK) Ltd.
Phototypeset by Computerset (MFK) Ltd., Ely, Cambs.
Printed in Great Britain by Commercial Colour Press.

British Library Cataloguing in Publication Data
Bratko, Ivan
Prolog programming for artificial intelligence.
1. Artificial intelligence—Data processing
2. Prolog (Computer program language)
I. Title
006.3'02855133 Q336

ISBN 0-201-14224-4

Library of Congress Cataloging-in-Publication Data
Bratko, Ivan.

Prolog programming for artificial intelligence.

Includes index.

1. Artificial intelligence—Data processing.
2. Prolog (Computer program language) I. Title.
Q336.B74 1986 006.3 86-1092
ISBN 0-201-14224-4

ABCDEF 89876

To Branka, Andrej and Tadej

Foreword

In the Middle Ages, knowledge of Latin and Greek was essential for all
scholars. The one-language scholar was necessarily a handicapped scholar who
lacked the perception that comes from seeing the world from two points of
view. Similarly, today’s practitioner of Artificial Intelligence is handicapped
unless thoroughly familiar with both Lisp and Prolog, for knowledge of the two
principal languages of Atrtificial Intelligence is essential for a broad point of
view.

I'am dedicated to Lisp, having grown up at MIT where Lisp was invented.
Nevertheless, I can never forget my excitement when I saw my first Prolog-
style program in action. It was part of Terry Winograd’s famous Shrdlu system,
whose blocks-world problem solver arranged for a simulated robot arm to
move blocks around a screen, solving intricate problems in response to human-
specified goals.

Winograd’s blocks-world problem solver was written in Microplanner, a
language which we now recognize as a sort of Prolog. Nevertheless, in spite of
the defects of Microplanner, the blocks-world problem solver was organized
explicitly around goals, because a Prolog-style language encourages program-
mers to think in terms of goals. The goal-oriented procedures for grasping,
clearing, getting rid of, moving, and ungrasping made it possible for a clear,
transparent, concise program to seem amazingly intelligent.

Winograd'’s blocks-world problem solver permanently changed the way I
think about programs. I even rewrote the blocks-world problem solver in Lisp
for my Lisp textbook because that program unalterably impressed me with the
power of the goal-oriented philosophy of programming and the fun of writing
goal-oriented programs.

But learning about goal-oriented programming through Lisp programs is
like reading Shakespeare in a language other than English. Some of the beauty
comes through, but not as powerfully as in the original. Similarly, the best way
to learn about goal-oriented programming is to read and write goal-oriented
programs in Prolog, for goal-oriented programming is what Prolog is all about.

In broader terms, the evolution of computer languages is an evolution
away from low-level languages, in which the programmer specifies how some-
thing is to be done, toward high-level languages, in which the programmer
specifies simply what is to be done. With the development of Fortran, for
example, programmers were no longer forced to speak to the computer in the
procrustian low-level language of addresses and registers. Instead, Fortran

vii

vii ~ FOREWORD

programmers could speak in their own language, or nearly so, using a notation
that made only moderate concessions to the one-dimensional, 80-column
world. .

Fortran and nearly all other languages are still how-type languages,
however. In my view, modern Lisp is the champion of these languages, for Lisp
in its Common Lisp form is enormously expressive, but how to do something is
still what the Lisp programmer is allowed to be expressive about. Prolog, on
the other hand, is a language that clearly breaks away from the how-type
languages, encouraging the programmer to describe situations and problems,
not the detailed means by which the problems are to be solved.

Consequently, an introduction to Prolog is important for all students of
Computer Science, for there is no better way to see what the notion of what-
type programming is all about.

In particular, the chapters of this book clearly illustrate the difference
between how-type and what-type thinking. In the first chapter, for example,
the difference is illustrated through problems dealing with family relations.
The Prolog programmer straightforwardly describes the grandfather concept
in explicit, natural terms: a grandfather is a father of a parent. Here is the
Prolog notation:

grandfather(X, Z) :- father(X, Y), parent(Y, Z).

Once Prolog knows what a grandfather is, it is easy to ask a question: who are
Patrick’s grandfathers, for example. Here again is the Prolog notation, along
with a typical answer:

?- grandfather(X, patrick).

X = james;

/

X = carl

It is Prolog’s job to figure out how to solve the problem by combing through a
database of known father and parent relations. The programmer specifies only
what is known and what question is to be solved. The programmer is more
concerned with knowledge and less concerned with algorithms that exploit the
knowledge.

Given that it is important to learn Prolog, the next question is how. 1
believe that learning a programming language is like learning a natural
language in many ways. For example, a reference manual is helpful in learnin%
a programming language, just as a dictionary is helpful in learning a natura
language. But no one learns a natural language with only a dictionary, for the
words are only part of what must be learned. The student of a natural language
must learn the conventions that govern how the words are put legally together,
and later, the student should learn the art of those who put the words together
with style. ‘

Similarly, no one learns a programming language from only a reference

FOREWORD ix

manual, for a reference manual says little or nothing about the way the
primitives of the language are put to use by those who use the language well.
For this, a textbook is required, and the best textbooks offer copious examples,
for good examples are distilled experience, and it is principally through
experience that we learn.

In this book, the first example is on the first page, and the remaining
pages constitute an example cornucopia, pouring forth Prolog programs writ-
ten by a passionate Prolog programmer who is dedicated to the Prolog point of
view. By carefully studying these examples, the reader acquires not only the
mechanics of the language, but also a personal collection of precedents, ready
to be taken apart, adapted, and reassembled together into new programs. With
this acquisition of precedent knowledge, the transition from novice to skilled
programmer is already under way.

Of course, a beneficial side effect of good programming examples is that
they expose a bit of interesting science as well as a lot about programming
itself. The science behind the examples in this book is Artificial Intelligence.
The reader learns about such problem-solving ideas as problem reduction,
forward and backward chaining, ‘how’ and ‘why’ questioning, and various
search techniques.

In fact, one of the great features of Prolog is that it is simple enough for
students in introductory Artificial Intelligence subjects to learn to use immedi-
ately. I expect that many instructors will use this book as part of their artificial-
intelligence subjects so that their students can see abstract ideas immediately
reduced to concrete, motivating form.

Among Prolog texts, I expect this book to be particularly popular, not
only because of its examples, but also because of a number of other features:

Careful summaries appear throughout.
Numerous exercises reinforce all concepts.
Structure selectors introduce the notion of data abstraction.

Explicit discussions of programming style and technique occupy an entire
chapter.

® There is honest attention to the problems to be faced in Prolog program-
ming, as well as the joys.

Features like this make this a well done, enjoyable, and instructive book.

Patrick H. Winston
Cambridge, Massachusetts
January 1986

Preface

Prolog is a programming language centred around a small set of basic mecha-
nisms, including pattern matching, tree-based data structuring, and automatic
backtracking. This small set constitutes a surprisingly powerful and flexible
programming framework. Prolog is especially well suited for problems that
involve objects — in particular, structured objects — and relations between
them. For example, it is an easy exercise in Prolog to express the spatial
relationships suggested in the cover illustration — such as, the top sphere is
behind the left one. It is also easy to state a more general rule: if X is closer to
the observer than Y and Y is closer than Z, then X must be closer than Z.
Prolog can now reason about the spatial relations and their consistency with
respect to the general rule. Features like this make Prolog a powerful language
for Atrtificial Intelligence and non-numerical programming in general.

Prolog stands for programming in logic — an idea that emerged in the
early 1970s to use logic as a programming language. The early developers of
this idea included Robert Kowalski at Edinburgh (on the theoretical side),
Maarten van Emden at Edinburgh (experimental demonstration), and Alain
Colmerauer at Marseilles (implementation). The present popularity of Prolog
is largely due to David Warren’s efficient implementation at Edinburgh in the
mid 1970s.

Since Prolog has its roots in mathematical logic it is often introduced
through logic. However, such a mathematically intensive introduction is not
very useful if the aim is to teach Prolog as a practical programming tool.
Therefore this. book is not concerned with the mathematical aspects, but
concentrates on the art of making the few basic mechanisms of Prolog solve
interesting problems. Whereas conventional languages are procedurally
oriented, Prolog introduces the descriptive, or declarative, view. This greatly
alters the way of thinking about problems and makes learning to program in
Prolog an exciting intellectual challenge.

Part One of the book introduces the Prolog language and shows how
Prolog programs are developed. Part Two demonstrates the power of Prolog
applied in some central areas of Artificial Intelligence, including problem
solving and heuristic search, expert systems, game playing and pattern-
directed systems. Fundamental Al techniques are introduced and developed in
depth towards their implementation in Prolog, resulting in complete programs.
These can be used as building blocks for sophisticated applications. Techniques
to handle important data structures, such as trees and graphs, are also included

xi

xii ~ PREFACE

although they do not strictly belong to AI. These techniques are often used in
Al programs and their implementation helps to learn the general skills of
Prolog programming. Throughout, the emphasis is on the clarity of programs;
efficiency tricks that rely on implementation-dependent features are avoided.

This book is for students of Prolog and Artificial Intelligence. It can be
used in a Prolog course or in an Al course in which the principles of Al are
brought to life through Prolog. The reader is assumed to have a basic general
knowledge of computers, but no knowledge of Al is necessary. No particular
programming experience is required; in fact, plentiful experience and devotion
to conventional procedural programming, for example in Pascal, might even be
an impediment to the fresh way of thinking Prolog requires.

Among several Prolog dialects, the Edinburgh syntax, also known as
DEC-10 syntax, is the most widespread, and is therefore also adopted in this
book. For compatibility with the various Prolog implementations, this book
only uses a relatively small subset of the built-in features that are shared by
many Prologs.

How to read the book? In Part One, the natural reading order corre-
sponds to the order in the book. However, the part of Section 2.4 that describes
the procedural meaning of Prolog in a more formalized way can be skipped.
Chapter 4 presents programming examples that can be read (or skipped)
selectively. Part Two allows more flexible reading strategies as the chapters are
intended to be mutually independent. However, some topics will still be
naturally done before others — for example, the basics of data structures
(Chapter 9) and basic search strategies (Chapters 11 and 13). The following
diagram summarizes the constraints on natural reading sequences:

Part One: 1 —» 2 — 3 — 4 (selectively) - 5—>6—> 7 — 8

. 2 14
Part Two: 9 —» 11 — 13.1-13.3 — 15
I I ™16

10 12 13.4

There are some controversial views that historically accompanied Prolog.
Prolog has fast gained popularity in Europe as a practical programming tool. In
Japan, Prolog was placed at the centre of the development of the Fifth
Generation computers. On the other hand, in the United States its acceptance
began with some delay, due to several historical factors. One of these origi-
nated from a previous American experience with the Microplanner language,
also akin to the idea of logic programming, but inefficiently implemented. This
early experience with Microplanner was unjustifiably generalized to Prolog,
but was later convincingly rectified by David Warren’s efficient implementa-
tion of Prolog. Reservations against Prolog also came in reaction to the
‘orthodox school’ of logic programming, which insisted on the use of pure logic
that should not be marred by adding practical facilities not related to logic. This
uncompromising position was modified by Prolog practitioners who adopted a
more pragmatic view, benefiting from combining both the declarative

PREFACE xiii

approach with the traditional, procedural one. A third factor.that delayec} Fhe
acceptance of Prolog was that for a long time Lisp had no serious competition
among languages for Al In research centres with strong Lisp tradition, there
was therefore a natural resistance to Prolog. The dilemma of Prolog vs. Lisp
has softened over the years and many now believe in a combination of ideas
from both worlds.

Acknowledgements

Donald Michie was responsible for first inducing my interest in Prolog. I
am grateful to Lawrence Byrd, Fernando Pereira and David H. D. Warren,
once members of the Prolog development team at Edinburgh, for their
programming advice and numerous discussions. The book greatly benefited
from comments and suggestions of Andrew McGettrick and Patrick H.
Winston. Other people who read parts of the manuscript and contributed
significant comments include: Igor Kononenko, Tanja Majaron, Igor Mozetic,
Timothy B. Niblett and Franc Zerdin. I would also like to thank Debra Myson-
Etherington and Simon Plumtree of Addison-Wesley for their work in the
process of making this book. Finally, this book would not be possible without
the stimulating creativity of the international logic programming community.

Ivan Bratko
The Turing Institute, Glasgow
January 1986

CONTENTS

Foreword

Preface

PART ONE

Chapter 1

1.1
1.2
1.3
1.4
1.5

Chapter.~ 2

21
2.2
2.3
2.4
2.5
2.6
2.7

Chapter 3

3.1
3.2
33
34

Chapter 4

4.1
4.2
/43
4.4
4.5

THE PROLOG LANGUAGE

An Overview of Prolog

An example program: defining family relations
Extending the example program by rules

A recursive rule definition

How Prolog answers questions

Declarative and procedural meaning of programs

Syntax and Meaning of Prolog Programs

Data objects

Matching

Declarative meaning of Prolog programs
Procedural meaning

Example: monkey and banana

Order of clauses and goals

Remarks on the relation between Prolog and logic

Lists, Operators, Arithmetic

Representation of lists
Some operations on lists
Operator notation
Arithmetic

Using Structures: Example Programs

Retrieving structured information from a database
Doing data abstraction

Simulating a non-deterministic automaton

Travel planning

The eight queens problem

vii

xi

14
19
24

27

27
35

43
49
53

67
78
84

93

93
97
99
103
108

xvi CONTENTS

Chapter, 'S Controlling Backtracking 120
5.1 Preventing backtracking 120

5.2 Examples using cut : 125

5.3 Negation as failure 129

5.4 Problems with cut and negation 133
Chapter 6 Input and Output 137
6.1 Communication with files 137

6.2 Processing files of terms 140

6.3 Manipulating characters 147

6.4 Constructing and decomposing atoms 149

6.5 Reading programs: consult, reconsult 152
Chapter 7 More Built-in Procedures 155
7.1 Testing the type of terms 155

7.2 Constructing and decomposing terms: =.., arg, name 163

7.3 Various kinds of equality 168

7.4 Database manipulation 169

7.5 Control facilities 174

7.6 bagof, setof and findall 175
Chapter 8 Programming Style and Technique 179
8.1 General principles of good programming 179

8.2 How to think about Prolog programs 181

8.3 Programming style 184

8.4 Debugging 187

8.5 Efficiency 188

PART TWO PROLOG IN ARTIFICIAL INTELLIGENCE 201
Chapter 9 Operations on Data Structures 203
9.1 Representing and sorting lists 203

9.2 Representing sets by binary trees 211

9.3 Insertion and deletion in a binary dictionary 217

9.4 Displaying trees 222

9.5 Graphs 224
Chapter 10 Advanced Tree Representations 233
10.1 The 2-3 dictionary 233

10.2 AVL-tree: an approximately balanced tree 241
Chapter 11 Basic Problem-Solving Strategies 246
11.1 Introductory concepts and examples 246

11.2 Depth-first search strategy 251

11.3 Breadth-first search strategy 256

Chapter 12

12.1
12.2
12.3

Chapter 13

13.1
13.2
13.3
13.4

Chapter 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Chapter 15

15.1
15.2
15.3

15.4
15.5
15.6

Chapter 16

16.1
16.2
16.3
16.4

CONTENTS

Comments on searching graphs, on optimality, and on search
complexity

Best-first: A Heuristic Search Principle

Best-first search
Best-first search applied to the eight puzzle
Best-first search applied to scheduling

Problem Reduction and AND/OR Graphs

AND/OR graph representation of problems
Examples of AND/OR representation
Basic AND/OR search procedures
Best-first AND/OR search

Expert Systems

Functions of an expert system

Main structure of an expert system
If-then rules for representing knowledge
Developing the shell

Implementation

Dealing with uncertainty

Concluding remarks

Game Playing

Two-person, perfect-information games

The minimax principle

The alpha-beta algorithm: an efficient implementation of
minimax

Minimax-based programs: refinements and limitations
Pattern knowledge and the mechanism of ‘advice’

A chess endgame program in Advice Language 0

Pattern-Directed Programming

Pattern-directed architecture

A simple interpreter for pattern-directed programs
A simple theorem prover

Concluding remarks

Solutions to Selected Exercises

Index

262

265

265
273
278

286

286
290
294
299

314

314
315
316
323
329
347
355

359

359
361

364
368
370
373

390

390
394
3%6
402

405

419

PART ONE

THE PROLOG LANGUAGE

parent

female -————=
sister

parent

1 An Overview
of Prolog

This chapter reviews basic mechanisms of Prolog through an example program.
Although the treatment is largely informal many important concepts are
introduced.

1.1 An example program: defining family relations

Prolog is a programming language for symbolic, non-numeric computation. It
is specially well suited for solving problems that involve objects and relations
between objects. Figure 1.1 shows an example: a family relation. The fact that
Tom is a parent of Bob can be written in Prolog as:

parent(tom, bob).

Here we choose parent as the name of a relation; tom and bob are its argu-

e ()

Figure 1.1 A family tree.

3

4 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

ments, For reasons that will become clear later we write names like tom with an
initial lower-case letter. The whole family tree of Figure 1.1 is defined by the
following Prolog program:

parent(pam, bob).

parent(tom, bob).

parent(tom, liz).

parent(bob, ann).

parent(bob, pat).

parent(pat, jim).
This program consists of six clauses. Each of these clauses declares one fact
about the parent relation.

When this program has been communicated to the Prolog system, Prolog
can be posed some questions about the parent relation. For example, Is Bob a
parent of Pat? This question can be communicated to the Prolog system by
typing into the terminal:

?- parent(bob, pat).
Having found this as an asserted fact in the program, Prolog will answer:

yes

A further query can be:

?- parent(liz, pat).

Prolog answers

no

because the program does not mention anything about Liz being a parent of
Pat. It also answers ‘no’ to the question

?- parent(tom, ben).

because the program has not even heard of the name Ben.
More interesting questions can also be asked. For example: Who is Liz’s
parent?

?- parent(X, liz).

Prolog’s answer will not be just ‘yes’ or ‘no’ this time. Prolog will tell us what is
the (yet unknown) value of X such that the above statement is true. So the

AN OVERVIEW OF PROLOG S

answer is:
X = tom

The question Who are Bob’s children? can be communicated to Prolog as:
?- parent(bob, X).

This time there is more than just one possible answer. Prolog first answers with
one solution:

X = ann
We may now want to see other solutions. We can say that to Prolog (in most
Prolog implementations by typing a semicolon), and Prolog will find other
answers:

X = pat

If we request more solutions again, Prolog will answer ‘no’ because all the
solutions have been exhausted.

Our program can be asked an even broader question: Who is a parent of
whom? Another formulation of this question is:

Find X and Y such that X is a parent of Y.
This is expressed in Prolog by:
?- parent(X, Y).
Prolog now finds all the parent-child pairs one after another. The solutions will

be displayed one at a time as long as we tell Prolog we want more solutions,
until all the solutions have been found. The answers are output as:

X = pam
Y = bob;
X = tom
Y = bob;
X = tom
Y = liz;

We can stop the stream of solutions by typing, for example, a period instead of
a semicolon (this depends on the implementation of Prolog).

6 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

\

parent \\
i
|
Figure 1.2 The grandparent o | grandparent
relation expressed as a parent /

composition of two parent

relations. @

Our example program can be asked still more complicated questions like:
Who is a grandparent of Jim? As our program does not directly know the
grandparent relation this query has to be broken down into two steps, as
illustrated by Figure 1.2.

(1) Whois a parent of Jim? Assume that this is some Y.
(2) Who is a parent of Y? Assume that this is some X.

Such a composed query is written in Prolog as a sequence of two simple ones:
?- parent(Y, jim), parent(X, Y).
The answer will be:

X = bob
Y = pat

Our composed query can be read: Find such X and Y that satisfy the following
two requirements:

parent(Y, jim) and parent(X, Y)

If we change the order of the two requirements the logical meaning remains the
same:

parent(X, Y) and parent(Y, jim)
We can indeed do this in our Prolog program and the query
?- parent(X, Y), parent(Y, jim).

will produce the same result.
In a similar way we can ask: Who are Tom’s grandchildren?

?- parent(tom, X), parent(X, Y).

AN OVERVIEW OF PROLOG 7

Prolog’s answers are:

X = bob
Y = ann;
X = bob
Y = pat

Yet another question could be: Do Ann and Pat have a common parent? This
can be expressed again in two steps:

(1) Whois a parent, X, of Ann?
(2) Is (this same) X a parent of Pat?

The corresponding question to Prolog is then:
?- parent(X, ann), parent(X, pat).
The answer is:
X = bob
Our example program has helped to illustrate some important points:

e It is easy in Prolog to define a relation, such as the parent relation, by
stating the n-tuples of objects that satisfy the relation.

® The user can easily query the Prolog system about relations defined in the
program.

® A Prolog program consists of clauses. Each clause terminates with a full
stop.

® The arguments of relations can (among other things) be: concrete
objects, or constants (such as tom and ann), or general objects such as X
and Y. Objects of the first kind in our program are called atoms. Objects
of the second kind are called variables.

® Questions to the system consist of one or more goals. A sequence of
goals, such as

parent(X, ann), parent(X, pat)
means the conjunction of the goals:

X is a parent of Ann, and
X is a parent of Pat.

The word ‘goals’ is used because Prolog accepts questions as goals that
are to be satisfied.

® Ananswer to a question can be either positive or negative, depending on

8 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

whe}her the corresponding goal can be satisfied or not. In the case of a
positive answer we say that the corresponding goal was satisfiable and
that the goal succeeded. Otherwise the goal was unsatisfiable and it failed.

® If several answers satisfy the question then Prolog will find as many of
them as desired by the user.

Exercises

1.1 Assuming the parent relation as defined in this section (see Figure 1.1),
what will be Prolog’s answers to the following questions?

(a) ?- parent(jim, X).

(b) ?- parent(X, jim).

(c) ?- parent(pam, X), parent(X, pat).

(d) ?- parent(pam, X), parent(X, Y), parent(Y, jim).

1.2 Formulate in Prolog the following questions about the parent relation:
(a) Who is Pat’s parent?
(b) Does Liz have a child?
(c) Who is Pat’s grandparent?

1.2 Extending the example program by rules

Our example program can be easily extended in many interesting ways. Let us
first add the information on the sex of the people that occur in the parent
relation. This can be done by simply adding the following facts to our program:

female(pam).
male(tom).
male(bob).
female(liz).
female(pat).
female(ann).
male(jim).

The relations introduced here are male and female. These relations are unary
(or one-place) relations. A binary relation like parent defines a relation
between pairs of objects; on the other hand, unary relations can be used to
declare simple yes/no properties of objects. The first unary clause above can be
read: Pam is a female. We could convey the same information declared in the
two unary relations with one binary relation, sex, instead. An alternative piece

AN OVERVIEW OF PROLOG 9

of program would then be:

sex(pam, feminine).
sex(tom, masculine).
sex(bob, masculine).

As our next extension to the program let us introduce the offspring
relation as the inverse of the parent relation. We could define offspring in a
similar way as the parent relation; that is, by simply providing a list of simple
facts about the offspring relation, each fact mentioning one pair of people such
that one is an offspring of the other. For example:

offspring(liz, tom).

However, the offspring relation can be defined much more elegantly by making
use of the fact that it is the inverse of parent, and that parent has already been
defined. This alternative way can be based on the following logical statement:

Forall Xand Y,
Y is an offspring of X if
Xis a parentof Y.

This formulation is already close to the formalism of Prolog. The correspond-
ing Prolog clause which has the same meaning is:

offspring(Y, X) :- parent(X, Y).
This clause can also be read as:

Forall X and Y,
if X is a parent of Y then
Y is an offspring of X.

Prolog clauses such as

offspring(Y, X) :- parent(X, Y).

are called rules. There is an important difference between facts and rules. A
fact like

parent(tom, liz).

is something that is always, unconditionally, true. On the other hand, rules
specify things that may be true if some condition is satisfied. Therefore we say
that rules have:

® a condition part (the right-hand side of the rule) and

shrikant
Highlight

10 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

® aconclusion part (the left-hand side of the rule).

The conclusion part s also called the head of a clause and the condition part the
body of a clause. For example:

offspring(Y, X) :- parent(X, Y).
k—'ﬁ/——} ;-—“,_._J

head body

If the condition parent(X, Y) is true then a logical consequence of this is
offspring(Y, X).

How rules are actually used by Prolog is illustrated by the following
example. Let us ask our program whether Liz is an offspring of Tom:

?- offspring(liz, tom).

There is no fact about offsprings in the program, therefore the only way to
consider this question is to apply the rule about offsprings. The rule is general
in the sense that it is applicable to any objects X and Y; therefore it can also be
applied to such particular objects as liz and tom. To apply the rule to liz and
tom, Y has to be substituted with liz, and X with tom. We say that the variables
X and Y become instantiated to:

X=tom and Y =liz

After the instantiation we have obtained a special case of our general rule. The
special case is:

offspring(liz, tom) :- parent(tom, liz).
The condition part has become
parent(tom, liz)

Now Prolog tries to find out whether the condition part is true. So the initial
goal

offspring(liz, tom)
has been replaced with the subgoal
parent(tom, liz)

This (new) goal happens to be trivial as it can be found as a fact in our program.
This means that the conclusion part of the rule is also true, and Prolog will
answer the question with yes.

Let us now add more family relations to our example program. The

shrikant
Highlight

shrikant
Highlight

AN OVERVIEW OF PROLOG 11

female
X

N \

\ \
parent offspring parent ‘; mother parent \

\

|

]

!
/

grandparent

—_————

parent /

Figure 1.3 Definition graphs for the relations offspring, mother and grandparent in
terms of other relations.

specification of the mother relation can be based on the following logical
statement:

Forall Xand Y,
X is the mother of Y if
X is a parent of Y and
X is a female.

This is translated into Prolog as the following rule:
mother(X, Y) :- parent(X, Y), female(X).

A comma between two conditions indicates the conjunction of the conditions,
meaning that both conditions have to be true.

Relations such as parent, offspring and mother can be illustrated by
diagrams such as those in Figure 1.3. These diagrams conform to the following
conventions. Nodes in the graphs correspond to objects — that is, arguments of
relations. Arcs between nodes correspond to binary (or two-place) relations.
The arcs are oriented so as to point from the first argument of the relation to the
second argument. Unary relations are indicated in the diagrams by simply
marking the corresponding objects with the name of the relation. The relations
that are being defined are represented by dashed arcs. So each diagram should
be understood as follows: if relations shown by solid arcs hold, then the relation
shown by a dashed arc also holds. The grandparent relation can be, according
to Figure 1.3, immediately written in Prolog as:

grandparent(X, Z) :- parent(X, Y), parent(Y, Z).

At this point it will be useful to make a comment on the layout of our
programs. Prolog gives us almost full freedom in choosing the layout of the
program. So we can insert spaces and new lines as it best suits our taste. In
general we want to make our programs look nice and tidy, and, above all, easy
to read. To this end we will often choose to write the head of a clause and each

%] PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

goal of the body on a separate line. When doing this, we will indent goals in
order to make the difference between the head and the goals more visible. For

example, the grandparent rule would be, according to this convention, written
as follows:

grandparent(X, Z) :- |
parent(X, Y), |
parent(Y, Z).

Figure 1.4 illustrates the sister relation:

For any X and Y,
X is a sister of Y if
(1) both X and Y have the same parent, and
(2) X is a female.

parent parent

female (X }—————

Figure 1.4 Defining the sister relation.

The graph in Figure 1.4 can be translated into Prolog as:

sister(X, Y) :-
parent(Z, X),
parent(Z, Y),
female(X).

Notice the way in which the requirement ‘both X and Y have the same parent’
has been expressed. The following logical formulation was used: some Z must
be a parent of X, and this same Z must be a parentof Y. An alternative, but less
elegant way would be tosay: Z1is a parent of X, and Z2 is a parent of Y, and Z 1
is equal to Z2.

We can now ask:
?- sister(ann, pat).

The answer will be ‘yes’, as expected (see Figure 1.1). Therefore we might

AN OVERVIEW OF PROLOG 13

conclude that the sister relation, as defined, works correctly. There is, how-
ever, a rather subtle flaw in our program which is revealed if we ask the
question Who is Pat’s sister?:

?- sister(X, pat).
Prolog will find two answers, one of which may come as a surprise:

X = ann;
X = pat U\/B R

So, Pat is a sister to herself?! This is probably not what we had in mind when
defining the sister relation. However, according to our rule about sisters
Prolog’s answer is perfectly logical. Our rule about sisters does not mention
that X and Y must not be the same if X is to be a sister of Y. As this is not
required Prolog (rightfully) assumes that X and Y can be the same, and willas a
consequence find that any female who has a parent is a sister of herself.

To correct our rule about sisters we have to add that X and Y must be
different. We will see in later chapters how this can be done in several ways, but
for the moment we will assume that a relation different is already known to
Prolog, and that

different(X, Y)

is satisfied if and only if X and Y are not equal. An improved rule for the sister
relation can then be:

sister(X, Y) :-
parent(Z, X),
parent(Z, Y),
female(X),
different(X, Y).

Some important points of this section are:

Prolog programs can be extended by simply adding new clauses.
Prolog clauses are of three types: facts, rules and questions.

Facts declare things that are always, unconditionally true.

Rules declare things that are true depending on a given condition.

By means of questions the user can ask the program what things are true.

Prolog clauses consist of the head and the body. The body is a list of goals
separated by commas. Commas are understood as conjunctions.

® Facts are clauses that have the empty body. Questions only have the
body. Rules have the head and the (non-empty) body.

shrikant
Highlight

14 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

In _the course of computation, a variable can be substituted by another
object. We say that a variable becomes instantiated.

® Variables are assumed to be universally quantified and are read as ‘for
all’. Alternative readings are, however, possible for variables that appear
only in the body. For example

hasachild(X) :- parent(X, Y).
can be read in two ways:

(a) ForallXandY,
if X is a parent of Y then
X has a child.

(b) Forall X,
X has a child if
there is some Y such that X is a parent of Y.

Exercises
1.3 Translate the following statements into Prolog rules:

(a) Everybody who has a child is happy (introduce a one-argument
relation happy).

(b) For all X, if X has a child who has a sister then X has two children
(introduce new relation hastwochildren).

1.4 Define the relation grandchild using the parent relation. Hint: It will be
similar to the grandparent relation (see Figure 1.3).

L5 Define the relation aunt(X, Y)in terms of the relations parent and sister.
As an aid you can first draw a diagram in the style of Figure 1.3 for the
aunt relation.

1.3 A recursive rule definition

Let us add one more relation to our family program, the predecessor relation.
This relation will be defined in terms of the parent relation. The whole
definition can be expressed with two rules. The first rule will define the direct
(immediate) predecessors and the second rule the indirect predecessors. We
say that some X is an indirect predecessor of some Z if there is a parentship
chain of people between X and Z, as illustrated in Figure 1.5. In our example of
Figure 1.1, Tom is a direct predecessor of Liz and an indirect predecessor of
Pat.

AN OVERVIEW OF PROLOG 15
A
\ \
parent :‘ predecessor parent |
(@) \
‘ parent | predecessor
| I
]
/
!
parent !

(b)

Figure 1.5 Examples of the predecessor relation: (a) X is a direct predecessor of Z; (b)
X is an indirect predecessor of Z.

The first rule is simple and can be formulated as:

For all X and Z,

X is a predecessor of Z if
X is a parent of Z.

This is straightforwardly translated into Prolog as:
predecessor(X, Z) :-
parent(X, Z).

The second rule, on the other hand, is more complicated because the chain of
parents may present some problems. One attempt to define indirect pre-
decessors could be as shown in Figure 1.6. According to this, the predecessor

parent \\ parent | Y
\ \
| predecessor @ \
)

parent !

\

|

/ parent | predecessor
]
/

®

!
/

predecessor
parent /)

Figure 1.6 Predecessor-successor pairs at various distances.

16 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

relation would be defined by a set of clauses as follows:

predecessor(X, Z) :-
parent(X, Z).

predecessor(X, Z) :-
parent(X, Y),
parent(Y, Z).

predecessor(X, Z) :-
parent(X, Y1),
parent(Y1, Y2),
parent(Y2, Z).

predecessor(X, Z) :-
parent(X, Y1),
parent(Y1, Y2),
parent(Y2, Y3),
parent(Y3, Z2).

This program is lengthy and, more importantly, it only works to some extent. It
would only discover predecessors to a certain depth in a family tree because the
length of the chain of people between the predecessor and the successor would
be limited according to the length of our predecessor clauses.

There is, however, an elegant and correct formulation of the predecessor
relation: it will be correct in the sense that it will work for predecessors at any
depth. The key idea is to define the predecessor relation in terms of itself.
Figure 1.7 illustrates the idea:

For all X and Z,
X is a predecessor of Z if
there is a Y such that
(1) Xis a parent of Y and
(2) Y is a predecessor of Z.

A Prolog clause with the above meaning is:

predecessor(X, Z) :-
parent(X, Y),
predecessor(Y, Z).

We have thus constructed a complete program for the predecessor rela-
tion, which consists of two rules: one for direct predecessors and one for
indirect predecessors. Both rules are rewritten together here:

predecessor(X, Z) :-
parent(X, Z).

" AN OVERVIEW OF PROLOG 17

predecessor(X, Z) :-
parent(X, Y),
| predecessor(Y, Z).

| The key to this formulation was the use of predecessor itself in its definition.
Such a definition may look surprising in view of the question: When defining
something, can we use this same thing that has not yet been completely
defined? Such definitions are, in general, called recursive definitions.
Logically, they are perfectly correct and understandable, which is also
intuitively obvious if we look at Figure 1.7. But will the Prolog system be able
to use recursive rules? It turns out that Prolog can indeed very easily use
recursive definitions. Recursive programming is, in fact, one of the fundamen-
tal principles of programming in Prolog. It is not possible to solve tasks of any
significant complexity in Prolog without the use of recursion.

\

|

predecessor

Figure 1.7 Recursive formulation of the predecessor relation.

Going back to our program, we can ask Prolog: Who are Pam’s suc-
cessors? That is: Who is a person that Pam is his or her predecessor?

?- predecessor(pam, X).

X = bob;
X = ann;
"X = pat;

X = jim

18 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Prqlog’s answers are of course correct and they logically follow from our
definition of the predecessor and the parent relation. There is, however, a
rather important question: How did Prolog actually use the program to find
these answers?

An informal explanation of how Prolog does this is given in the next
section. But first let us put together all the pieces of our family program, which

parent(pam, bob).
parent(tom, bob).
parent(tom, liz).
parent(bob, ann).
parent(bob, pat).
parent(pat, jim).

female(pam).

male(tom).

male(bob).

female(liz).

female(ann).

female(pat).

male(jim).

offspring(Y, X) :-
parent(X, Y).

mother(X, Y) :-

parent(X, Y),
female(X).

grandparent(X, Z) :-

parent(X, Y),
parent(Y, Z).

sister(X, Y) :-
parent(Z, X),
parent(Z, Y),
female(X),
different(X, Y).

predecessor(X, Z) :-

parent(X, Z).

predecessor(X, Z) :-

parent(X, Y),
predecessor(Y, Z).

% Pam is a parent of Bob

% Pam is female
% Tom is male

% Y is an offspring of X if
% X is a parent of Y

% X is the mother of Y if
% X is a parent of Y and
% X is female

% X is a grandparent of Z if
% X is a parent of Y and
% Y is a parent of Z

% X is a sister of Y if

% X and Y have the same parent and
% X is female and
% X and Y are different

% Rule prl: X is a predecessor of Z

% Rule pr2: X is a predecessor of Z

Figure 1.8 The family program.

shrikant
Highlight

AN OVERVIEW OF PROLOG 19

was extended gradually by adding new facts and rules. The final form of the
program is shown in Figure 1.8. Looking at Figure 1.8, two further points are in
order here: the first will introduce the term ‘procedure’, the second will be
about comments in programs.

The program in Figure 1.8 defines several relations — parent, male,
female, predecessor, etc. The predecessor relation, for example, is defined by
two clauses. We say that these two clauses are about the predecessor relation.
Sometimes it is convenient to consider the whole set of clauses about the same
relation. Such a set of clauses is called a procedure.

. e ——— .

In Figure 1.8, the two rules about the predecessor relation have been
distinguished by the names ‘pr1’ and ‘pr2’, added as comments to the program.
These names will be used later as references to these rules. Comments are, in
general, ignored by the Prolog system. They only serve as a further clarification
to the person who reads the program. Comments are distinguished in Prolog
from the rest of the program by being enclosed in special brackets /*’ and “*/’.
Thus comments in Prolog look like this:

/* This is a comment */

Another method, more practical for short comments, uses the percent charac-

ter ‘%’. Everything between ‘%’ and the end of the line is interpreted as a
comment:)

% This is also a comment

Exercise

1.6 Consider the following alternative definition of the predecessor relation:

predecessor(X, Z) :-
parent(X, Z).

predecessor(X, Z) :-
parent(Y, Z), _
predecessor(X, Y).

Does this also seem to be a proper definition of predecessors? Can you

modify the diagram of Figure 1.7 so that it would correspond to this new
definition?

1.4 How Prolog answers questions

This section gives an informal explanation of how Prolog answers questions.

A question to Prolog is always a sequence of one or more goals. To
answer a question, Prolog tries to satisfy all the goals. What does it mean to
satisfy a goal? To satisfy a goal means to demonstrate that the goal is true,

shrikant
Highlight

20 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

assuming that the relations in the program are true. In other words, to satisfy a
goal means to demonstrate that the goal logically follows from the facts and
rules in the program. If the question contains variables, Prolog also has to find
what are the particular objects (in place of variables) for which the goals are
satisfied. The particular instantiation of variables to these objects is displayed
to the user. If Prolog cannot demonstrate for some instantiation of variables
that the goals logically follow from the program, then Prolog’s answer to the
question will be ‘no’.

An appropriate view of the interpretation of a Prolog program in
mathematical terms is then as follows: Prolog accepts facts and rules as a set of
axioms, and the user’s question as a conjectured theorem; then it tries to prove
this theorem - that is, to demonstrate that it can be logically derived from the
axioms.

We will illustrate this view by a classical example. Let the axioms be:

All men are fallible.
Socrates is a man.

A theorem that logically follows from these two axioms is:
Socrates is fallible.

The first axiom above can be rewritten as:

For all X, if X is a man then X is fallible.

Accordingly, the example can be translated into Prolog as follows:

fallible(X) :- man(X). % All men are fallible
man(socrates). % Socrates is a man
?- fallible(socrates). % Socrates is fallible?
yes

A more complicated example from the family program of Figure 1.8 is:
?- predecessor(tom, pat).

We know that parent(bob, pat) is a fact. Using this fact and rule prl we can
conclude predecessor(bob, pat). This is a derived fact: it cannot be found
explicitly in our program, but it can be derived from facts and rules in the
program. An inference step, such as this, can be written in a more compact
form as:

parent(bob, pat) ==> predecessor(bob, pat)
This can be read: from parent(bob, pat) it follows predecessor(bob, pat), by

shrikant
Highlight

shrikant
Highlight

AN OVERVIEW OF PROLOG 21

rule prl. Further, we know that parent(tom, bob) is a fact. Using this fact and

| the derived fact predecessor(bob, pat) we can conclude predecessor(tom, pat),
by rule pr2. We have thus shown that our goal statement predecessor(tom, pat)
is true. This whole inference process of two steps can be written as:

parent(bob, pat) ==>> predecessor(bob, pat)
parent(tom, bob) and predecessor(bob, pat) == predecessor(tom, pat)

We have thus shown what can be a sequence of steps that satisfy a goal —
that is, make it clear that the goal is true. Let us call this a proof sequence. We
have not, however, shown how the Prolog system actually finds such a proof

- sequence.

Prolog finds the proof sequence in the inverse order to that which we have
just used. Instead of starting with simple facts given in the program, Prolog
starts with the goals and, using rules, substitutes the current goals with new
goals, until new goals happen to be simple facts. Given the question

?- predecessor(tom, pat).

Prolog will try to satisfy this goal. In order to do so it will try to find a clause in
the program from which the above goal could immediately follow. Obviously,
the only clauses relevant to this end are prl and pr2. These are the rules about
the predecessor relation. We say that the heads of these rules match the goal.
The two clauses, pri and pr2, represent two alternative ways for Prolog to
proceed. Prolog first tries that clause which appears first in the program:

predecessor(X, Z) :- parent(X, Z).

Since the goal is predecessor(tom, pat), the variables in the rule must be
instantiated as follows:

X = tom, Z = pat
The original goal predecessor(tom, pat) is then replaced by a new goal:
parent(tom, pat)
This step of using a rule to transform a goal into another goal, as above, is
graphically illustrated in Figure 1.9. There is no clause in the program whose
head matches the goal parent(tom, pat), therefore this goal fails. Now Prolog

backtracks to the original goal in order to try an alternative way to derive the
top goal predecessor(tom, pat). The rule pr2 is thus tried:

predecessor(X, Z) :-
parent(X, Y),
predecessor(Y, Z).

22 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

predecessor(tom, pat)

by rule pri

parent(tom, pat)

Figure1.9 The first step of the execution. The top goal is true if the bottom goal is true.

As before, the variables X and Z become instantiated as:
X = tom, Z = pat

But Y is not instantiated yet. The top goal predecessor(tom, pat)is replaced by
two goals:

parent(tom, Y),
predecessor(Y, pat)

This executional step is shown in Figure 1.10, which is an extension to the
situation we had in Figure 1.9.

Being now faced with two goals, Prolog tries to satisfy them in the order
that they are written. The first one is easy as it matches one of the facts in the
program. The matching forces Y to become instantiated to bob. Thus the first
goal has been satisfied, and the remaining goal has become:

predecessor(bob, pat)
To satisfy this goal the rule pr! is used again. Note that this (second) applica-

tion of the same rule has nothing to do with its previous application. Therefore,
Prolog uses a new set of variables in the rule each time the rule is applied. To

predecessor(tom, pat)

5 ?

by rule prl by rule pr2

parent(tom, Y)

parent(tom, pat) predecessor(Y, pat)

no

Figure 1.10 Execution trace continued from Figure 1.9.

AN OVERVIEW OF PROLOG 23

indicate this we shall rename the variables in rule prl for this application as
follows:

predecessor(X', Z') :-
parent(X', Z').

The head has to match our current goal predecessor(bob, pat). Therefore
X' = bob, Z' = pat
The current goal is replaced by

parent(bob, pat)

predecessor(tom, pat)
FeYy Py
by rule prl. by rule pr2
arent(tom, Y)
parent(tom, pat) ;redecessor(Y, pat)

1)
no

Y =bob || by fact parent(tom, bob)

predecessor(bob, pat)

‘L™

by rule prl

parent(bob, pat)

yes

Figure 1.11 The complete execution trace to satisfy the goal predecessor(tom, pat).
The right-hand branch proves the goal is satisfiable.

This goal is immediately satisfied because it appears in the program as a fact.
This completes the execution trace which is graphically shown in Figure 1.11.

The graphical illustration of the execution trace in Figure 1.11 has the
form of a tree. The nodes of the tree correspond to goals, or to lists of goals that
are to be satisfied. The arcs between the nodes correspond to the application of
(alternative) program clauses that transform the goals at one node into the
goals at another node. The top goal is satisfied when a path is found from the
root node (top goal) to a leaf node labelled ‘yes’. A leafis labelled ‘yes’ ifitis a
simple fact. The execution of Prolog programs is the searching for such paths.

24 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Quring the search Prolog may enter an unsuccessful branch. When Prolog
dlscovgrs that a branch fails it automatically backtracks to the previous node
and tries to apply an alternative clause at that node.

Exercise

1.7 Tr:y to understand how Prolog derives answers to the following questions,
using the program of Figure 1.8. Try to draw the corresponding deriva-

tion diagrams in the style of Figures 1.9 to 1.11. Will any backtracking
occur at particular questions?

(a) ?- parent(pam, bob).

(b) ?- mother(pam, bob).

(c) ?- grandparent(pam, ann).
(d) ?- grandparent(bob, jim).

1.5 Declarative and procedural meaning of programs

In our examples so far it has always been possible to understand the results of
the program without exactly knowing how the system actually found the
results. It therefore makes sense to distinguish between two levels of meaning
of Prolog programs; namely,

® the declarative meaning and
® the procedural meaning.

The declarative meaning is concerned only with the relations defined by the
program. The declarative meaning thus determines what will be the output of
the program. On the other hand, the procedural meaning also determines how
this output is obtained; that is, how are the relations actually evaluated by the
Prolog system.

The ability of Prolog to work out many procedural details on its own is
considered to be one of its specific advantages. It encourages the programmer
to consider the declarative meaning of programs relatively independently of
their procedural meaning. Since the results of the program are, in principle,
determined by its declarative meaning, this should be (in principle) sufficient
for writing programs. This is of practical importance because the declarative
aspects of programs are usually easier to understand than the procedural
details. To take full advantage of this, the programmer should concentrate
mainly on the declarative meaning and, whenever possible, avoid being
distracted by the executional details. These should be left to the greatest
possible extent to the Prolog system itself.

AN OVERVIEW OF PROLOG 25

This declarative approach indeed often makes programming in Prolog
easier than in typical procedurally oriented programming languages such as
Pascal. Unfortunately, however, the declarative approach is not always suffi-
cient. It will later become clear that, especially in large programs, the pro-
cedural aspects cannot be completely ignored by the programmer for practical
reasons of executional efficiency. Nevertheless, the declarative style of think-
ing about Prolog programs should be encouraged and the procedural aspects
ignored to the extent that is permitted by practical constraints.

Summary

e Prolog programming consists of defining relations and querying about
relations.

® A program consists of clauses. These are of three types: facts, rules and
questions.

® A relation can be specified by facts, simply stating the n-tuples of objects
that satisfy the relation, or by stating rules about the relation.

A procedure is a set of clauses about the same relation.

Querying about relations, by means of questions, resembles querying a
database. Prolog’s answer to a question consists of a set of objects that
satisfy the question.

¢ In Prolog, to establish whether an object satisfies a query is often a
complicated process that involves logical inference, exploring among
alternatives and possibly backtracking. All this is done automatically by
the Prolog system and is, in principle, hidden from the user.

® Two types of meaning of Prolog programs are distinguished: declarative
and procedural. The declarative view is advantageous from the program-
ming point of view. Nevertheless, the procedural details often have to be
considered by the programmer as well.

® The following concepts have been introduced in this chapter:

clause, fact, rule, question

the head of a clause, the body of a clause
recursive rule, recursive definition
procedure

atom, variable

instantiation of a variable

goal

goal is satisfiable, goal succeeds

goal is unsatisfiable, goal fails
backtracking

declarative meaning, procedural meaning

26 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

References

Various implementations of Prolog use different syntactic conventions. In this
book we use the so-called Edinburgh syntax (also called DEC-10 syntax,
established by the influential implementation of Prolog for the DEC-10 com-
puter; Pereira et al. 1978) which has been adopted by many popular Prologs
such as Quintus Prolog, CProlog, Poplog, etc.

Bowen, D. L. (1981) DECsystem-10 Prolog User’s Manual. University of
Edinburgh: Department of Artificial Intelligence.

Mellish, C. and Hardy, S. (1984) Integrating Prolog in the POPLOG environ-
ment. Implementations of Prolog (J. A. Campbell, ed.). Ellis Horwood.

Pereira, F. (1982) C-Prolog User’s Manual. University of Edinburgh: Depart-
ment of Computer-Aided Architectural Design.

Pereira, L. M., Pereira, F. and Warren, D. H. D. (1978) User’s Guide to
DECsystem-10 Prolog. University of Edinburgh: Department of Artificial
Intelligence.

Quintus Prolog User’s Guide and Reference Manual. Palo Alto: Quintus
Computer Systems Inc. (1985).

. Syntax and Meaning of
2 Prolog Programs

This chapter gives a systematic treatment of the syntax and semantics of basic
concepts of Prolog, and introduces structured data objects. The topics included
are:

simple data objects (atoms, numbers, v;ariables)

structured objects :

matching as the fundamental operation on objects

declarative (or non-procedural) meaning of a program

procedural meaning of a program

relation between the declarative and procedural meanings of a program

e ¢ 6 o o o o

altering the procedural meaning by reordering clauses and goals

Most of these topics have already been reviewed in Chapter 1. Here the
treatment will become more formal and detailed.

2.1 Data objects

Figure 2.1 shows a classification of data objects in Prolog. The Prolog system
recognizes the type of an object in the program by its syntactic form. This is
possible because the syntax of Prolog specifies different forms for each type of

data objects
VD
simple objects structures
/N
constants variables
/N
atoms numbers

Figure 2.1 Data objects in Prolog.

27

28 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

data objects. We have already seen a method for distinguishing between atoms
and variables in Chapter 1: variables start with upper-case letters whereas
atoms start with lower-case letters. No additional information (such as data-
type declaration) has to be communicated to Prolog in order to recognize the
type of an object.

2.1.1 Atoms and numbers

In Chapter 1 we have seen some simple examples of atoms and variables. In
general, however, they can take more complicated forms —that is, strings of the
following characters:

® upper-case letters A, B, ..., Z

® Jlower-case letters a, b, ..., z

® digits0,1,2,...,9

® special characterssuchas + — * /<> =: & _"~
AN

~

Atoms can be constructed in three ways:

(1) Strings of letters, digits and the underscore character, ‘_’, starting with a
lower-case letter:

anna
nil

x25

x25

x 25AB

X

Xy
alpha_beta_procedure
miss_Jones
sarah_jones

(2) Strings of special characters:

When using atoms of this form, some care is necessary because some
strings of special characters already have a predefined meaning; an
example is “:-’.

(3) Strings of characters enclosed in single quotes. This is useful if we want,
for example, to have an atom that starts with a capital letter. By enclosing

SYNTAX AND MEANING OF PROLOG PROGRAMS 29

it in quotes we make it distinguishable from variables:

>Tom’
’South_America’
’Sarah Jones’

Numbers used in Prolog include integer numbers and real numbers. The
syntax of integers is simple, as illustrated by the following examples:

1 1313 0 -97

Not all integer numbers can be represented in a computer, therefore the range
of integers is limited to an interval between some smallest and some largest
number permitted by a particular Prolog implementation. Normally the range
allowed by an implementation is at least between —16383 and 16383, and often
it is considerably wider.

The treatment of real numbers depends on the implementation of Prolog.
We will assume the simple syntax of numbers, as shown by the following
examples:

3.14 —0.0035 100.2

Real numbers are not used very much in typical Prolog programming. The
reason for this is that Prolog is primarily a language for symbolic, non-numeric
computation, as opposed to number crunching oriented languages such as
Fortran. In symbolic computation, integers are often used, for example, to
count the number of items in a list; but there is little need for real numbers.

Apart from this lack of necessity to use real numbers in typical Prolog
applications, there is another reason for avoiding real numbers. In general, we
want to keep the meaning of programs as neat as possible. The introduction of
real numbers somewhat impairs this neatness because of numerical errors that
arise due to rounding when doing arithmetic. For example, the evaluation of
the expression

10000 + 0.0001 — 10000
may result in 0 instead of the correct result 0.0001.

2.1.2 Variables

Variables are strings of letters, digits and underscore characters. They start
with an upper-case letter or an underscore character:

X

Result

Object2
Participant_list

shrikant
Highlight

b

30 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

| ShoppingList
x23
23

When a variable appears in a clause once only, we do not have to invent a
name for it. We can use the so-called ‘anonymous’ variable, which is written as
a single underscore character. For example, let us consider the following rule:

hasachild(X) :- parent(X, Y).

.This rule says: for all X, X has a child if X isa parent of some Y. We are defining
the property hasachild which, as it is meant here, does not depend on the name

of the child. Thus, this is a proper place in which to use an anonymous variable.
The clause above can thus be rewritten:

basachild(X) :- parent(X,).

‘f Each time a single underscore character occurs in a clause it represents a new

i

anonymous variable. For example, we can say that there is somebody who has
a child if there are two objects such that one is a parent of the other:

somebody_has_child :- parent(_, _).
This is equivalent to: |

somebody_has_child :- parent(X, Y). »
But this is, of course, quite different from:

somebody_has_child :- parent(X, X).

1If the anonymous variable appears in a question clause then its value is not
output when Prolog answers the question. If we are interested in people who
have children, but not in the names of the children, then we can simply ask:

?- parent(X,).

The lexical scope of variable names is one clause. This means that, for
example, if the name X15 occurs in two clauses, then it signifies two different
variables. But each occurrence of X15 within the same clause means the same
variable. The situation is different for constants: the same atom always means
the same object in any clause — that is, throughout the whole program.

2.1.3 Structures

Structured objects (or simply structures) are objects that have several compo-
nents. The components themselves can, in turn, be structures. For example,

SYNTAX AND MEANING OF PROLOG PROGRAMS 31

date date(1, may783)
1 may 1983 functor arguments

(a) (b)

Figure 2.2 Date is an example of a structured object: (a) as it is represented as a tree;
(b) as it is written in Prolog.

the date can be viewed as a structure with three components: day, month, year.
Although composed of several components, structures are treated in the
program as single objects. In order to combine the components into a single
object we have to choose a functor. A suitable functor for our example is date.
Then the date 1st May 1983 can be written as:

date(1, may, 1983)

(see Figure 2.2).

All the components in this example are constants (two integers and one
atom). Components can also be variables or other structures. Any day in May
can be represented by the structure:

date(Day, may, 1983).

Note that Day is a variable and can be instantiated to any object at some later
point in the execution.)

This method for data structuring is simple and powerful. It is one of the
reasons why Prolog is so naturally applied to problems that involve symbolic
manipulation.

Syntactically, all data objects in Prolog are terms. For example,

may

and

date(1, may, 1983)

are terms.

All structured objects can be pictured as trees (see Figure 2.2 for an
example). The root of the tree is the functor, and the offsprings of the root are
the components. If a component is also a structure then it is a subtree of the tree
that corresponds to the whole structured object. _

~ Our next example will show how structures can be used to represent some .
simple geometric objects (see Figure 2.3). A point in two-dimensional space is

32 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

5 L
(6.4)
P2=(23)
3t
2t / (42)
a.n

| P1= (1)
1 2 3 4 5 6 7 3

Figure 2.3 Some simple geometric objects.

defined by its two coordinates; a line segment is defined by two points; and a
triangle can be defined by three points. Let us choose the following functors:

point for points,
seg for line segments, and
triangle for triangles.

Then the objects in Figure 2.3 can be represented by the following Prolog
terms:

P1 = point(1,1)
P2 = point(2,3)
S = seg(P1, P2) = seg(point(1,1), point(2,3))
T = triangle(point(4,2), point(6,4), point(7,1))

P1 = point S =seg
/ \
1 1 point point
/N /N
1 1 2 3
T = triangle
point point point

IN N N

Figure 2.4 Tree representation of the objects in Figure 2.3.

SYNTAX AND MEANING OF PROLOG PROGRAMS 33

The corresponding tree representation of these objects is shown in Figure 2.4.
In general, the functor at the root of the tree is called the principal functor of
the term. -
1 If in the same program we also had points in three-dimensional space
i then we could use another functor, point3, say, for their representation:
|

point3(X, Y, Z)

We can, however, use the same name, point, for points in both two and three
dimensions, and write for example:

point(X1, Y1) and point(X, Y, Z)

If the same name appears in the program in two different roles, as is the case for
| point above, the Prolog system will recognize the difference by the number of
arguments, and will interpret this name as two functors: one of them with two
‘ arguments and the other one with three arguments. This is so because each
functor is defined by two things:

(1) the name, whose syntax is that of atoms;
(2) the arity — that is, the number of arguments.

As already explained, all structured objects in Prolog are trees, repre-
sented in the program by terms. We will study two more examples to illustrate
how naturally complicated data objects can be represented by Prolog terms.
Figure 2.5 shows the tree structure that corresponds to the arithmetic
expression

@+b)*(c-59)

According to the syntax of terms introduced so far this can be written, using the
symbols ‘*’, ‘+’ and ‘-’ as functors, as follows:

*(+(a, b)’ —(c, 5))

N
SN N

Figure 2.5 A tree structure that corresponds to the arithmetic expression
(a + b)*(c - 5).

34 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

This is of course a legal Prolog term; but this is not the form that we would
normally like to have. We would normally prefer the usual, infix notation as
used in mathematics. In fact, Prolog also allows us to use the infix notation so
that the symbols ‘*’, ‘+’ and ‘—’ are written as infix operators. Details of how
the programmer can define his or her own operators will be discussed in
Chapter 3.

As the last example we consider some smple electric circuits shown in
Figure 2.6. The right-hand side of the figure shows the tree representation of
these circuits. The atoms r1, r2, r3 and r4 are the names of the resistors. The

rl r2 7 . seq
/' \
@ rl r2
rl par
rl/ r2
(b)
rl

Figure 2.6 Some simple electric circuits and their tree representations: (a) sequential
composition of resistors rl and r2; (b) parallel composition of two resistors; (c) paraliel
composition of three resistors; (d) parallel composition of r1 and another circuit.

SYNTAX AND MEANING OF PROLOG PROGRAMS 35

functors par and seq denote the parallel and the sequential compositions of
resistors respectively. The corresponding Prolog terms are:

seq(r1, r2)

par(r1, r2)

par(r1, par(r2, r3))

par(r1, seq(par(12, 13), r4))

Exercises

2.1

2.2

Which of the following are syntactically correct Prolog objects? What
kinds of object are they (atom, number, variable, structure)?
(a) Diana

(b) diana

(c) ’Diana’

(d) _diana

(e) ’Diana goes south’

(f) goes(diana, south)

() 45

(h) (X, Y)

(i) +(north, west)

(j) three(Black(Cats))

Suggest a representation for rectangles, squares and circles as structured
Prolog objects. Use an approach similar to that in Figure 2.4. For
example, a rectangle can be represented by four points (or maybe three
points only). Write some example terms that represent some concrete
objects of these types using the suggested representation.

2.2 Matching

In the previous section we have seen how terms can be used to represent
complex data objects. The most important operation on terms is matching.
Matching alone can produce some interesting computation.

M
@)

Given two terms, we say that they match if:

they are identical, or

the variables in both terms can be instantiated to objects in such a way
that after the substitution of variables by these objects the terms become
identical.

36 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

For example, the terms date(D, M, 1983) and date(D1, may, Y1) match. One
Instantiation that makes both terms identical is:

¢ D is instantiated to D1
® Miis instantiated to may
® Y1 is instantiated to 1983

This instantiation is more compactly written in the familiar form in which
Prolog outputs results:

D=D1
M = may
Y1 = 1983

On the other hand, the terms date(D, M, 1983) and date(D1, M1, 1444) do
not match, nor do the terms date(X, Y, Z) and point(X, Y, Z).

Matching is a process that takes as input two terms and checks whether
they match. If the terms do not match we say that this process fails. If they do
match then the process succeeds and it also instantiates the variables in both
terms to such values that the terms become identical.

Let us consider again the matching of the two dates. The request for this
operation can be communicated to the Prolog system by the following ques-
tion, using the operator ‘=":

?- date(D, M, 1983) = date(D1, may, Y1).
We have already mentioned the instantiation D = D1, M = may, Y1 = 1983,

which achieves the match. There are, however, other instantiations that also
make both terms identical. Two of them are as follows:

D=1
DI=1

M = may
Y1 = 1983
D = third
D1 = third
M = may
Y1 = 1983

These two instantiations are said to be less general than the first one because
they constrain the values of the variables D and D1 stronger than necessary.
For making both terms in our example identical, it is only important that D and
D1 have the same value, although this value can be anything. Matching in
Prolog always results in the most general instantiation. This is the instantiation
that commits the variables to the least possible extent, thus leaving the greatest

SYNTAX AND MEANING OF PROLOG PROGRAMS 37

possible freedom for further instantiations if further matching is required. As
an example consider the following question:

?- date(D, M, 1983)
date(D, M, 1983)

date(D1, may, Y1),
date(15, M, Y).

To satisfy the first goal, Prolog instantiates the variables as follows:

D=D1
M = may
Y1 = 1983

After having satisfied the second goal, the instantiation becomes more specific
as follows:

D=15
D1 =15
M = may
Y1 = 1983
Y = 1983

This example also illustrates that variables, during the execution of consecutive
goals, typically become instantiated to increasingly more specific values.

The general rules to decide whether two terms, S and T, match are as
follows:

The last of these rules can be visualized by considering the tree represen-
tation of terms, as in the example of Figure 2.7. The matching process starts at
the root (the principal functors). As both functors match, the process proceeds
to the arguments where matching of the pairs of corresponding arguments
occurs. So the whole matching process can be thought of as consisting of the

38 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

N
ANEVAN
PN

AWA

Figure 2.7 Matching triangle(point(1,1), A, point(2,3)) = triangle(X, point(4,Y),
point(2,Z)).

followihg sequence of (simpler) matching operations:

triangle = triangle,
point(1,1) = X,

A = point(4,Y),
point(2,3) = point(2,Z).

The whole matching process succeeds because all the matchings in the
sequence succeed. The resulting instantiation is:

X = point(1,1)
A = point(4,Y)
Z=3

The following example will illustrate how matching alone can be used for
interesting computation. Let us return to the simple geometric objects of
Figure 2.4, and define a piece of program for recognizing horizontal and
vertical line segments. ‘Vertical’ is a property of segments, so it can be
- formalized in Prolog as a unary relation. Figure 2.8 helps to formulate this
relation. A segment is vertical if the x-coordinates of its end-points are equal,
otherwise there is no other restriction on the segment. The property ‘horizon-
tal’ is similarly formulated, with only x and y interchanged. The following
program, consisting of two facts, does the job:

" vertical(seg(point(X,Y), point(X,Y1)).
horizontal(seg(point(X,Y), point(X1,Y)).

SYNTAX AND MEANING OF PROLOG PROGRAMS 39

| The following conversation is possible with this program:

7- vertical(seg(point(1,1), point(1,2))).

yes

7- vertical(seg(point(1,1), point(2,Y))).

no

?- horizontal(seg(point(1,1), point(2,Y))).

Y=1
The first question was answered ‘yes’ because the goal in the question matched
one of the facts in the program. For the second question no match was possible.

In the third question, Y was forced to become 1 by matching the fact about
horizontal segments.

point(X,Y1)
®
point(X,Y) ~ point(XL,Y)
-~ »
®
point(X,Y)

Figure 2.8 Illustration of vertical and horizontal line segments.

A more general question to the program is: Are there any vertical
segments that start at the point (2,3)?

?- vertical(seg(point(2,3), P)).

P = point(2,Y)
This answer means: Yes, any segment that ends at any point (2,Y), which
means anywhere on the vertical line x = 2. It should be noted that Prolog’s

actual answer would probably not look as neat as above, but (depending on the
Prolog implementation used) something like this:

P = point(2,.136)

This is, however, only a cosmetic difference. Here _136 is a variable that has

40 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

not been instantiated. _136 is, of course, a legal variable name that the system
has constructed during the execution. The system has to generate new names in
order to rename the user’s variables in the program. This is necessary for two
reasons: first, because the same name in different clauses signifies different
variables, and second, in successive applications of the same clause, its ‘copy’
with a new set of variables is used each time.

Another interesting question to our program is: Is there a segment that is
both vertical and horizontal?

?- vertical(S), horizontal(S).

S = seg(point(X,Y), point(X,Y))
This answer by Prolog says: Yes, any segment that is degenerated to a point has
the property of being vertical and horizontal at the same time. The answer was,

again, derived simply by matching. As before, some internally generated
names may appear in the answer, instead of the variable names X and Y.

Exercises

2.3 Will the following matching operations succeed or fail? If they succeed,

what are the resulting instantiations of variables?

(a) point(A, B) = point(1, 2)

(b) point(A, B) = point(X, Y, Z)

(c) plus(2,2)=4

(d) +(2, D)= +(E,2)

(e) triangle(point(-1,0), P2, P3) = triangle(P1, point(1,0), point(0,Y))
The resulting instantiation defines a family of triangles. How would
you describe this family?

2.4 Using the representation for line segments as described in this section,
write a term that represents any vertical line segment at x = 5.

2.5 Assume that a rectangle is represented by the term
rectangle(P1, P2, P3, P4) where the P’s are the vertices of the rectangle
positively ordered. Define the relation

regular(R)
which is true if R is a rectangle whose sides are vertical and horizontal.

2.3 Declarative meaning of Prolog programs

We have already seen in Chapter 1 that Prolog programs can be understood in
two ways: declaratively and procedurally. In this and the next section we will

SYNTAX AND MEANING OF PROLOG ?ROGRAMS 41

consider a more formal definition of the declarative and procedural meanings
of programs in basic Prolog. But first let us look at the difference between these
two meanings again.

Consider a clause

P :- QR

where P, Q and R have the syntax of terms. Some alternative declarative
readings of this clause are:

P is true if Q and R are true.
From Q and R follows P.

Two alternative procedural readings of this clause are:

To solve problem P, first solve the subproblem Q and then the
subproblem R.

To satisfy P, first satisfy Q and then R.

Thus the difference between the declarative readings and the procedural ones
is that the latter do not only define the logical relations between the head of the
clause and the goals in the body, but also the order in which the goals are
processed.

Let us now formalize the declarative meaning.

The declarative meaning of programs determines whether a given goal is
true, and if so, for what values of variables it is true. To precisely define the
declarative meaning we need to introduce the concept of instance of a clause.
An instance of a clause Cis the clause C with each of its variables substituted by
some term. A variant of a clause C is such an instance of the clause C where
each variable is substituted by another variable. For example, consider the
clause:

hasachild(X) :- parent(X, Y).
Two variants of this clause are:

hasachild(A) :- parent(A, B).
hasachild(X1) :- parent(X1, X2).

Instances of this clause are:

hasachild(peter) :- parent(peter, Z).
hasachild(barry) :- parent(barry, small(caroline)).

42 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Given a program and a goal G, the declarative meaning says:

This definition extends to Prolog questions as follows. In general, a
question to the Prolog system is a list of goals separated by commas. A list of
goals is true if all the goals in the list are true for the same instantiation of
variables. The values of the variables result from the most general
instantiation.

A comma between goals thus denotes the conjunction of goals: they all
have to be true. But Prolog also accepts the disjunction of goals: any one of the
goals in a disjunction has to be true. Disjunction is indicated by a semicolon.
For example,

-Q;R

is read: P is true if Q is true or R is true. The meaning of this clause is thus the
same as the meaning of the following two clauses together:

P :- Q.
P :- R.

The comma binds stronger than the semicolon. So the clause
- QRS T, U.
is understood as
P - (QR);(S, T, U).
and means the same as the clauses:

- QR
P :- S, T, U.

Exercises

2.6 Consider the following program:
f(1, one).
f(s(1), two).

SYNTAX AND MEANING OF PROLOG PROGRAMS 43

f(s(s(1)), three).
f(s(s(s(X))), N) :-
f(X, N).

How will Prolog answer the following questions? Whenever several
answers are possible, give at least two.

(a) ?- f(s(1), A).
(b) ?- f(s(s(1)), two).

(c) - f(s(s(s(s(s(s(1))), C).
(d) ?- f(D, three).

2.7 The following program says that two people are relatives if
(a) one is a predecessor of the other, or
(b) they have a common predecessor, or
(c) they have a common successor:

relatives(X, Y) :-
predecessor(X, Y).

relatives(X, Y) :-
predecessor(Y, X).

relatives(X, Y) :- % X and Y have a common predecessor
predecessor(Z, X),
predecessor(Z, Y).

relatives(X, Y) :- % X and Y have a common successor
predecessor(X, Z),
predecessor(Y, Z).

Can you shorten this program by using the semicolon notation?

2.8 Rewrite the following program without using the semicolon notation.

translate(Number, Word) :-
Number = 1, Word = one;
Number = 2, Word = two;
Number = 3, Word = three.

2.4 Procedural meaning

The procedural meaning specifies how Prolog answers questions. To answer a
question means to try to satisfy a list of goals. They can be satisfied if the
variables that occur in the goals can be instantiated in such a way that the goals
logically follow from the program. Thus the procedural meaning of Prologis a
procedure for executing a list of goals with respect to a given program. To
‘execute goals’ means: try to satisfy them.

4 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

program

——— success/failure indicator
goal list ———s=} execute

|—— instantiation of variables

Figure 2.9 Input/output view of the procedure that executes a list of goals.

Let us call this procedure execute. As shown in Figure 2.9, the inputs to
and the outputs from this procedure are:

input: a program and a goal list
output: a success/failure indicator and an instantiation of variables

The meaning of the two output results is as follows:

(1) The success/failure indicator is ‘yes’ if the goals are satisfiable and ‘no’
otherwise. We say that ‘yes’ signals a successful termination and ‘no’ a
failure.

(2) An instantiation of variables is only produced in the case of a successful
termination; in the case of failure there is no instantiation.

In Chapter 1, we have in effect already discussed informally what pro-
cedure execute does, under the heading ‘How Prolog answers questions?’.
What follows in the rest of this section is just a more formal and systematic
description of this process, and can be skipped without seriously affecting the
understanding of the rest of the book.

Particular operations in the goal execution process are illustrated by the
example in Figure 2.10. It may be helpful to study Figure 2.10 before reading
the following general description.

PROGRAM

big(bear). % Clause 1

big(elephant). % Clause 2

small(cat). % Clause 3

brown(bear). % Clause 4

black(cat). % Clause 5

gray(elephant). % Clause 6

dark(Z) :- % Clause 7: Anything black is dark
black(Z).

dark(Z) :- % Clause 8: Anything brown is dark

brown(Z).

shrikant
Highlight

SYNTAX AND MEANING OF PROLOG PROGRAMS 45

QUESTION

?- dark(X), big(X). % Who is dark and big?

EXECUTION TRACE

(1) Initial goal list: dark(X), big(X).

(2) Scan the program from top to bottom looking for a clause whose head
matches the first goal dark(X). Clause 7 found:

dark(Z) :- black(Z).
Replace the first goal by the instantiated body of clause 7, giving a new
goal list.

black(X), big(X)

(3) Scan the program to find a match with black(X). Clause 5 found:
black(cat). This clause has no body, so the goal list, properly instanti-
ated, shrinks to:

big(cat)

(4) Scan the program for the goal big(cat). No clause found. Therefore
backtrack to step (3) and undo the instantiation X = cat. Now the goal list
is again:

black(X), big(X)
Continue scanning the program below clause 5. No clause found.
Therefore backtrack to step (2) and continue scanning below clause 7.
Clause 8 is found:

dark(Z) :- brown(Z).
Replace the first goal in the goal list by brown(X), giving:

brown(X), big(X)

(5) Scan the program to match brown(X}, finding brown(bear). This clause
has no body, so the goal list shrinks to:

big(bear)
(6) Scan the program and find clause big(bear). It has no body so the goal list

shrinks to empty. This indicates successful termination, and the corre-
sponding variable instantiation is:

X = bear

Figure2.10 Anexample toillustrate the procedural meaning of Prolog: a sample trace
of the procedure execute.

46 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

To execute a list of goals
G1, G2, ...,Gm

the procedure execute does the following:

SYNTAX AND MEANING OF PROLOG PROGRAMS 47

This procedure is more compactly written in a Pascal-like notation in Figure
2.11.

Several additional remarks are in order here regarding the procedure
execute as presented. First, it was not explicitly described how the final result-
ing instantiation of variables is produced. It is the instantiation S which led to a
successful termination, and was possibly further refined by additional instan-
tiations that were done in the nested recursive calls to execute.

Whenever a recursive call to execute fails, the execution returns to
SCANNING, continuing at the program clause C that had been last used
before. As the application of the clause C did not lead to a successful termina-
tion Prolog has to try an alternative clause to proceed. What effectively
happens is that Prolog abandons this whole part of the unsuccessful execution
and backtracks to the point (clause C) where this failed branch of the execution
was started. When the procedure backtracks to a certain point, all the variable
instantiations that were done after that point are undone. This ensures that
Prolog systematically examines all the possible alternative paths of execution
until one is found that eventually succeeds, or until all of them have been
shown to fail.

We have already seen that even after a successful termination the user
can force the system to backtrack to search for more solutions. In our descrip-
tion of execute this detail was left out.

Of course, in actual implementations of Prolog, several other refine-
ments have to be added to execute. One of them is to reduce the amount of

procedure execute (Program, GoalList, Success);

Input arguments:
Program: list of clauses
GoallList: list of goals
Output argument:
Success: truth value; Success will become true if
GoalList is true with respect to Program
Local variables:
Goal: goal
OtherGoals: list of goals
Satisfied: truth value
MatchOK: truth value
Instant: instantiation of variables
H,H', Bl, Bl', ..., Bn, Bn': goals
Auxiliary functions:
empty(L): returns true if L is the empty list
head(L): returns the first element of list L
tail(L): returns the rest of L
append(L1,L2): appends list L2 at the end of list L1
match(T1,T2,MatchOK, Instant): tries to match terms T1 and T2; if
succeeds then MatchOK is true and Instant is the corresponding
instantiation of variables
substitute(Instant, Goals): substitutes variables in Goals according
to instantiation Instant

48 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

begin
if empty(GoalList) then Success := true
else
begin
Goal := head(GoallList);
OtherGoals := tail(GoalList);
Satisfied := false;
while not Satisfied and “‘more clauses in program” do
begin
Let next clause in Program be
H :- BI, ..., Bn.
Construct a variant of this clause
H -Bl', ..., Bn'.
match(Goal,H' ,MatchOK ,Instant);
if MatchOK then
begin
NewGoals := append([Bl',...,Bn’],OtherGoals);
NewGoals := substitute(Instant, NewGoals);
execute(Program,NewGoals,Satisfied)
end
end;
Success := Satisfied
end
end;

Figure 2.11 Executing Prolog goals.

scanning through the program clauses to improve efficiency. So a practical
Prolog implementation will not scan through all the clauses of the program, but
will only consider the clauses about the relation in the current goal.

Exercise

2.9 Consider the program in Figure 2.10 and simulate, in the style of Figure
2.10, Prolog’s execution of the question:

?- big(X), dark(X).

Compare your execution trace with that of Figure 2.10 when the question
was essentially the same, but with the goals in the order:

?- dark(X), big(X).

In which of the two cases does Prolog have to do more work before the
answer is found?

SYNTAX AND MEANING OF PROLOG PROGRAMS 49

2.5 Example: monkey and banana

The monkey and banana problem is often used as a simple example of problem
solving. Our Prolog program for this problem will show how the mechanisms of
matching and backtracking can be used in such exercises. We will develop the
program in the non-procedural way, and then study its procedural behaviour in
detail. The program will be compact and illustrative.

We will use the following variation of the problem. There is a monkey at
the door into a room. In the middle of the room a banana is hanging from the
ceiling. The monkey is hungry and wants to get the banana, but he cannot
stretch high enough from the floor. At the window of the room there is a box
the monkey may use. The monkey can perform the following actions: walk on
the floor, climb the box, push the box around (if it is already at the box) and
grasp the banana if standing on the box directly under the banana. Can the
monkey get the banana?

One important task in programming is that of finding a representation of
the problem in terms of concepts of the programming language used. In our
case we can think of the ‘monkey world’ as always being in some state that can
change in time. The current state is determined by the positions of the objects.
For example, the initial state of the world is determined by:

(1) Monkey is at door.

(2) Monkey is on floor.

(3) Box is at window.

(4) Monkey does not have banana.

It is convenient to combine all of these four pieces of information into one
structured object. Let us choose the word ‘state’ as the functor to hold the four
components together. Figure 2.12 shows the initial state represented as a
structured object.

Our problem can be viewed as a one-person game. Let us now formalize
the rules of the game. First, the goal of the game is a situation in which the
monkey has the banana; that is, any state in which the last component is ‘has’:

state(_, _, _, has)
state
atdoor onfloor atwindow hasnot

Figure 2.12 The initial state of the monkey world represented as a structured object.
The four components are: horizontal position of monkey, vertical position of monkey,
position of box, monkey has or has not the banana.

50 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Second, what are the allowed moves that change the world from one state to
another? There are four types of moves:

(1) grasp banana,
(2) climb box,
(3) push box,

(4) walk around.

Not all moves are possible in every possible state of the world. For example,
the move ‘grasp’ is only possible if the monkey is standing on the box directly
under the banana (which is in the middle of the room) and does not have the
banana yet. Such rules can be formalized in Prolog as a three-place relation
named move:

move(Statel, M, State2)
The three arguments of the relation specify a move thus:

Statel -------- > State2
Statel is the state before the move, M is the move executed and State2 is the
state after the move.

The move ‘grasp’, with its necessary precondition on the state before the
move, can be defined by the clause:

move(state(middle, onbox, middle, hasnot), % Before move
grasp, % Move
state(middle, onbox, middle, has)). % After move

This fact says that after the move the monkey has the banana, and he has
remained on the box in the middle of the room.

In a similar way we can express the fact that the monkey on the floor can
walk from any horizontal position P1 to any position P2. The monkey can do
this regardless of the position of the box and whether it has the banana or not.
All this can be defined by the following Prolog fact:

move(state(P1, onfloor, B, H),
walk(P1, P2), % Walk from P1 to P2
state(P2, onfloor, B, H)).

Note that this clause says many things, including, for example:

® the move executed was ‘walk from some position P1 to some position P2’;
® the monkey is on the floor before and after the move;

SYNTAX AND MEANING OF PROLOG PROGRAMS 51

move M
=)=~ —()
canget canget has

Figure 2.13 Recursive formulation of canget.

® the box is at some point B which remained the same after the move;
® the ‘has banana’ status remains the same after the move.

The clause actually specifies a whole set of possible moves because it is
applicable to any situation that matches the specified state before the move.
Such a specification is therefore sometimes also called a move schema. Due to
the concept of Prolog variables such schemas can be easily programmed in
Prolog.

The other two types of moves, ‘push’ and ‘climb’, can be similarly
specified.

The main kind of question that our program will have to answer is: Can
the monkey in some initial state S get the banana? This can be formulated as a
predicate

canget(S)

where the argument S is a state of the monkey world. The program for canget
can be based on two observations:

(1) For any state S in which the monkey already has the banana, the predi-
cate canget must certainly be true; no move is needed in this case. This
corresponds to the Prolog fact:

canget(state(_, _, _, has)).

(2) Inother cases one or more moves are necessary. The monkey can get the
banana in any state S1 if there is some move M from state S1 to some state
S2, such that the monkey can then get the banana in state S2 (in zero or
more moves). This principle is illustrated in Figure 2.13. A Prolog clause
that corresponds to this rule is:

canget(S1) :-
move(S1, M, S2),
canget(S2).

This completes our program which is shown in Figure 2.14.

The formulation of canget is recursive and is similar to that of the
predecessor relation of Chapter 1 (compare Figures 2.13 and 1.7). This prin-
ciple is used in Prolog again and again.

52 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% Legal moves

move(state(middle, onbox, middle, hasnot),
grasp, % Grasp banana
state(middle, onbox, middle, has)).

move(state(P, onfloor, P, H),
climb, % Climb box
state(P, onbox, P, H)).

move(state(P1, qnﬂoor, P1, H),
push(P1, P2), % Push box from P1 to P2
state(P2, onfloor, P2, H)).

move(state(P1, onfloor, B, H),
walk(P1, P2), % Walk from P1 to P2
state(P2, onfloor, B, H)).

% canget(State): monkey can get banana in State

canget(state(_, _, _, has)). % can 1: Monkey already has it
canget(Statel) :- % can 2: Do some work to get it
move(Statel, Move, State2), % Do something
canget(State2). % Get it now

Figure 2.14 A program for the monkey and banana problem.

We have developed our monkey and banana program in the non-pro-
cedural way. Let us now study its procedural behaviour by considering the
following question to the program:

?- canget(state(atdoor, onfloor, atwindow, hasnot)).

Prolog’s answer is ‘yes’. The process carried out by Prolog to reach this answer
proceeds, according to the procedural semantics of Prolog, through a sequence
of goal lists. It involves some search for right moves among the possible
alternative moves. At some point this search will take a wrong move leading to
a dead branch. At this stage, backtracking will help it to recover. Figure 2.15
illustrates this search process.

To answer the question Prolog had to backtrack once only. A right
sequence of moves was found almost straight away. The reason for this
efficiency of the program was the order in which the clauses about the move
relation occurred in the program. The order in our case (luckily) turned out to
be quite suitable. However, less lucky orderings are possible. According to the
rules of the game, the monkey could just as easily try to walk here or there

SYNTAX AND MEANING OF PROLOG PROGRAMS 53

state(atdoor, onfloor atwmdow,hasnot))

grasp / climb push\ &((atdoor, P2)

Qtate(P2, onfloor, atwindow, hasnot))

’
grasp :)
climb ! backtrack push(P2,P2)
1
no 1
H
state(atwindow, onbox, atwindow, hasnot) state(P2', onfloor, P2', hasnot)

gras%hmywalxpush\ grasl/ /cllmb

tate(PZ onbox, P2 hasnot

grasp
P2 = middle

A
Gtate(middle, onbox, middle, hasD

Figure2.15 The monkey’s search for the banana. The search starts at the top node and
proceeds downwards, as indicated. Alternative moves are tried in the left-to-right
order. Backtracking occurred once only.

without ever touching the box, or aimlessly push the box around. A more
thorough investigation will reveal, as shown in the following section, that the
ordering of clauses is, in the case of our program, in fact critical.

2.6 Order of clauses and goals

2.6.1 Danger of indefinite looping

Consider the following clause:

p =P

This says that ‘p is true if p is true’. This is declaratively perfectly correct, but

54 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

procedurally is quite useless. In fact, such a clause can cause problems to
Prolog. Consider the question:

?- p.

Using the clause above, the goal p is replaced by the same goal p; this will be in
turn replaced by p, etc. In such a case Prolog will enter an infinite loop not
noticing that no progress is being made.

This example is a simple way of getting Prolog to loop indefinitely.
However, similar looping could have occurred in some of our previous example
programs if we changed the order of clauses, or the order of goals in the
clauses. It will be instructive to consider some examples.

In the monkey and banana program, the clauses about the move relation
were ordered thus: grasp, climb, push, walk (perhaps ‘unclimb’ should be
added for completeness). These clauses say that grasping is possible, climbing
is possible, etc. According to the procedural semantics of Prolog, the order of
clauses indicates that the monkey prefers grasping to climbing, climbing to
pushing, etc. This order of preferences in fact helps the monkey to solve the
problem. But what could happen if the order was different? Let us assume that
the ‘walk’ clause appears first. The execution of our original goal of the
previous section

?- canget(state(atdoor, onfloor, atwindow, hasnot)).

would this time produce the following trace. The first four goal lists (with
variables appropriately renamed) are the same as before:

(1) canget(state(atdoor, onfloor, atwindow, hasnot))
The second clause of canget (‘can2’) is applied, producing:

(2) move(state(atdoor, onfloor, atwindow, hasnot), M’, S2’),
canget(S2')

By the move walk(atdoor, P2’) we get:
(3) canget(state(P2, onfloor, atwindow, hasnot))
Using the clause ‘can2’ again the goal list becomes:

(4) move(state(P2', onfloor, atwindow, hasnot), M", S2"),
canget(S2”)

Now the difference occurs. The first clause whose head matches the first goal
above is now ‘walk’ (and not ‘climb’ as before). The instantiation is

SYNTAX AND MEANING OF PROLOG PROGRAMS 55

S2" = state(P2", onfloor, atwindow, hasnot). Therefore the goal list becomes:
(5) canget(state(P2", onfloor, atwindow, hasnot))
Applying the clause ‘can2’ we obtain:

(6) move(state(P2", onfloor, atwindow, hasnot), M'"', S2'""),
canget(S2''")

Again, ‘walk’ is now tried first, producing;:
(7) canget(state(P2'"’, onfloor, atwindow, hasnot))

Let us now compare the goals (3), (5) and (7). They are the same apart from
one variable; this variable is, in turn, P’, P”and P'’’'. As we know, the success of
a goal does not depend on particular names of variables in the goal. This means
that from goal list (3) the execution trace shows no progress. We can see, in
fact, that the same two clauses, ‘can2’ and ‘walk’, are used repetitively. The
monkey walks around without ever trying to use the box. As there is no
progress made this will (theoretically) go on for ever: Prolog will not realize
that there is no point in continuing along this line.

This example shows Prolog trying to solve a problem in such a way that a
solution is never reached, although a solution exists. Such situations are not
unusual in Prolog programming. Infinite loops are, also, not unusual in other
programming languages. What is unusual in comparison with other languages
is that the declarative meaning of a Prolog program may be correct, but the
program is at the same time procedurally incorrect in that it is not able to
produce an answer to a question. In such cases Prolog may not be able to satisfy
a goal because it tries to reach an answer by choosing a wrong path.

A natural question to ask at this point is: Can we not make some more
substantial change to our program so as to drastically prevent any danger of
looping? Or shall we always have to rely just on a suitable ordering of clauses
and goals? As it turns out programs, especially large ones, would be too fragile
if they just had to rely on some suitable ordering. There are several other
methods that preclude infinite loops, and these are much more general and
robust than the ordering method itself. These techniques will be used regularly
later in the book, especially in those chapters that deal with path finding,
problem solving and search.

2.6.2 Program variations through reordering of clauses and goals

Already in the example programs of Chapter 1 there was a latent danger of
producing a cycling behaviour. Our program to specify the predecessor relation

56 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

in Chapter 1 was:
predecessor(X, Z) :-
parent(X, Z).

predecessor(X, Z) :-
parent(X, Y),
predecessor(Y, Z).

Let us analyze some variations of this program. All the variations will clearly
have the same declarative meaning, but not the same procedural meaning.

% Four versions of the predecessor program
% The original version

pred1(X, Z) :-
parent(X, Z).
pred1(X, Z) :-

parent(X, Y),
pred1(Y, Z).

% Variation a: swap clauses of the original version
pred2(X, Z) :-

parent(X, Y),

pred2(Y, Z).

pred2(X, Z) :-
parent(X, Z).

% Variation b: swap goals in second clause of the original version

pred3(X, Z) :-
parent(X, Z).

pred3(X, Z) :-
pred3(X, Y),
parent(Y, Z).

% Variation c: swap goals and clauses of the original version
predd(X, Z) :-

pred4(X, Y),

parent(Y, Z).

pred4(X, Z) :-
parent(X, Z).

Figure 2.16 Four versions of the predecessor program.

SYNTAX AND MEANING OF PROLOG PROGRAMS 57

According to the declarative semantics of Prolog we can, without affecting the
declarative meaning, change

(1) the order of clauses in the program, and
(2) the order of goals in the bodies of clauses.

The predecessor procedure consists of two clauses, and one of them has two
goals in the body. There are, therefore, four variations of this program, all with
the same declarative meaning. The four variations are obtained by

(1) swapping both clauses, and
(2) swapping the goals for each order of clauses.

The corresponding four procedures, called pred1, pred2, pred3 and pred4, are
shown in Figure 2.16.

There are important differences in the behaviour of these four
declaratively equivalent procedures. To demonstrate these, consider the
parent relation as shown in Figure 1.1 of Chapter 1. Now, what happens if we
ask whether Tom is a predecessor of Pat using the four variations of the
predecessor relation:

?- predl(tom, pat).
yes
?- pred2(tom, pat).
yes

?- pred3(tom, pat).

yes
?- pred4(tom, pat).

In the last case Prolog cannot find the answer. This is manifested on the
terminal by a Prolog message such as ‘More core needed’.

Figure 1.11 in Chapter 1 showed the trace of pred1 (in Chapter 1 called
predecessor) produced for the above question. Figure 2.17 shows the corre-
sponding traces for pred2, pred3 and pred4. Figure 2.17(c) clearly shows that
pred4 is hopeless, and Figure 2.17(a) indicates that pred2 is rather inefficient
compared to pred1: pred2 does much more searching and backtracking in the
family tree.

This comparison should remind us of a general practical heuristic in
problem solving: it is often useful to try the simplest idea first. In our case, all
the versions of the predecessor relation are based on two ideas:

e the simpler idea is to check whether the two arguments of the predecessor
relation satisfy the parent relation;

58 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

® the more complicated idea is to find somebody ‘between’ both people
(somebody who is related to them by the parent and predecessor
relations).

Of the four variations of the predecessor relation, pred1 does simplest things
first. On the contrary, pred4 always tries complicated things first. pred2 and
pred3 are in between the two extremes. Even without a detailed study of the
execution traces, pred1 should be clearly preferred merely on the grounds of
the rule ‘try simple things first’. This rule will be in general a useful guide in
programming.

Our four variations of the predecessor procedure can be further com-
pared by considering the question: What types of questions can particular
variations answer, and what types can they not answer? It turns out that pred1

pred2(X,Z) :-
parent(X,Y), pred2(tom, pat)
pred2(Y,Z).
pred2(X,Z) :- ﬂ i
parent(X,Z). parent(tom,Y)
pred2(Y ,pat)
11 Y =bob
pred2(bob, pat)
gar::;:(vb(:b;;;)) parent(bob, pat)
Y =ann ﬂ yes
pred2(ann, pat)
ey, | [| Y7
no no
pred2(pat, pat)
parent(pat,Y"
bred2(npety | | parent(pat,pat
MY = jim no
pred2(jim, pat)

1

y m Y"" .
:arentgy,a:w))l parent(jim, pat)

{a) no no

SYNTAX AND MEANING OF PROLOG PROGRAMS 59

pred3(X,Z) :-
parent(X,Z).
pred3(X,Z) :-
pred3(X,Y),
parent(Y,Z).

pred3(tom, pat)

Y >

pred3(tom Y)
parent(tom, pat) parent(Y , pat)

no |]‘

parent(tom, Y)
parent(Y , pat)

TY'=bob

parent(bob, pat)

(b) o yes

p’;f:(df(’)%)Y):- " predd(tom,pat)
phrent(Y",Z;. B Kt
predd(X,Z) :-
parent(X,Z).

predi(iom,Yi)
parent(Y', pat)

|

predd(tom,Y)
parent(Y",Y)
parent(Y ,Pat)

|

predd(tom,Y')

e

parent(Y ,Y')
parent(Y ,Y)
parent(Y, lm)

¢ I

Figure 2.17 The behaviour of three formulations of the predecessor relation on the
question: Is Tom a predecessor of Pat?

60 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

and pred2 are both able to reach an answer for any type of question about
predecessors; pred4 can never reach an answer; and pred3 sometimes can and
sometimes cannot. One example in which pred3 fails is:

?- pred3(liz, jim).

This question again brings the system into an infinite sequence of recursive
calls. Thus pred3 also cannot be considered procedurally correct.

2.6.3 Combining declarative and procedural views

The foregoing section has shown that the order of goals and clauses does
matter. Furthermore, there are programs that are declaratively correct, but do
not work in practice. Such discrepancies between the declarative and pro-
cedural meaning may appear annoying. One may argue: Why not simply forget
about the declarative meaning. This argument can be brought to an extreme
with a clause such as

predecessor(X, Z) :- predecessor(X, Z).

which is declaratively correct, but is completely useless as a working program.

The reason why we should not forget about the declarative meaning is
that progress in programming technology is achieved by moving away from
procedural details toward declarative aspects, which are normally easier to
formulate and understand. The system itself, not the programmer, should
carry the burden of filling in the procedural details. Prolog does help toward
this end, although, as we have seen in this section, it only helps partially: it
sometimes does work out the procedural details itself properly, and sometimes
it does not. The philosophy adopted by many is that it is better to have at least
some declarative meaning rather than none (‘none’ is the case in most other
programming languages). The practical aspect of this view is that it is often
rather easy to get a working program once we have a program that is
declaratively correct. Consequently, a useful practical approach that often
works is to concentrate on the declarative aspects of the problem, then test the
resulting program on the computer, and if it fails procedurally try to rearrange
the clauses and goals into a right order.

2.7 Remarks on the relation between Prolog and logic

Prolog is related to mathematical logic, so its syntax and meaning can be
specified most concisely with references to logic. Prolog is indeed often defined
that way. However, such an introduction to Prolog assumes that the reader is
familiar with certain concepts of mathematical logic. These concepts are, on
the other hand, certainly not necessary for understanding and using Prolog as a

SYNTAX AND MEANING OF PROLOG PROGRAMS 61

programming tool, which is the aim of this book. For the reader who is
especially interested in the relation between Prolog and logic, the following are
some basic links to mathematical logic, together with some appropriate
references.

Prolog’s syntax is that of the first-order predicate logic formulas written in
the so-called clause form (a form in which quantifiers are not explicitly writ-
ten), and further restricted to Horn clauses only (clauses that have at most one
positive literal). Clocksin and Mellish (1981) give a Prolog program that
transforms a first-order predicate calculus formula into the clause form. The
procedural meaning of Prolog is based on the resolution principle for mechani-
cal theorem proving introduced by Robinson in his classical paper (1965).
Prolog uses a special strategy for resolution theorem proving called SLD. An
introduction to the first-order predicate calculus and resolution-based theorem
proving can be found in Nilsson 1981. Mathematical questions regarding the
properties of Prolog’s procedural meaning with respect to logic are analyzed by
Lloyd (1984).

Matching in Prolog corresponds to what is called unification in logic.
However, we avoid the word unification because matching, for efficiency
reasons in most Prolog systems, is implemented in a way that does not exactly
correspond to unification (see Exercise 2.10). But from the practical point of
view this approximation to unification is quite adequate. Carrs e

Exercise
2.10 What happens if we ask Prolog:
?- X = f(X).

Should this request for matching succeed or fail? According to the
definition of unification in logic this should fail, but what happens accord-
ing to our definition of matching in Section 2.2? Try to explain why many
Prolog implementations answer the question above with:

X = fECEEECEEEEEEEEAEC ..

Summary

So far we have covered a kind of basic Prolog, also called ‘pure Prolog’. It is
‘pure’ because it corresponds closely to formal logic. Extensions whose aim is
to tailor the language toward some practical needs will be covered later in the
book (Chapters 3, 5, 6, 7). Important points of this chapter are:

e Simple objects in Prolog are atoms, variables and numbers. Structured
objects, or structures, are used to represent objects that have several
components.

62

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Structures are constructed by means of functors. Each functor is defined
by its name and arity.

The type of object is recognized entirely by its syntactic form.

The lexical scope of variables is one clause. Thus the same variable name
in two clauses means two different variables.

Structures can be naturally pictured as trees. Prolog can be viewed as a
language for processing trees.

The matching operation takes two terms and tries to make them identical
by instantiating the variables in both terms.

Matching, if it succeeds, results in the most general instantiation of
variables.

The declarative semantics of Prolog defines whether a goal is true with
respect to a given program, and if it is true, for what instantiation of
variables it is true.

A comma between goals means the conjunction of goals. A semicolon
between goals means the disjunction of goals.

The procedural semantics of Prolog is a procedure for satisfying a list of
goals in the context of a given program. The procedure outputs the truth
or falsity of the goal list and the corresponding instantiations of variables.
The procedure automatically backtracks to examine alternatives.

The declarative meaning of programs in ‘pure Prolog’ does not depend on
the order of clauses and the order of goals in clauses.

The procedural meaning does depend on the order of goals and clauses.
Thus the order can affect the efficiency of the program; an unsuitable
order may even lead to infinite recursive calls.

Given a declaratively correct program, changing the order of clauses and
goals can improve the program’s efficiency while retaining its declarative
correctness. Reordering is one method of preventing indefinite looping.

There are other more general techniques, apart from reordering, to
prevent indefinite looping and thereby make programs procedurally
robust.

Concepts discussed in this chapter are:

data objects: atom, number, variable, structure
term

functor, arity of a functor

principal functor of a term

matching of terms

most general instantiation

declarative semantics

instance of a clause, variant of a clause
procedural semantics

executing goals

SYNTAX AND MEANING OF PROLOG PROGRAMS 63

References

Clocksin, W. F. and Mellish, C. S. (1981) Programming in Prolog. Springet-
Verlag.

Lloyd, J. W. (1984) Foundations of Logic Programming. Springer-Verlag.

Nilsson, N. J. (1981) Principles of Artificial Intelligence. Tioga; also Springer-
Verlag.

Robinson, A. J. (1965) A machine-oriented logic based on the resolution
principle. JACM 12: 23-41.

Lists, Operators,
Arithmetic

In this chapter we will study a special notation for lists, one of the simplest and
most useful structures, and some programs for typical operations on lists. We
will also look at simple arithmetic and the operator notation which often
improves the readability of programs. Basic Prolog of Chapter 2, extended
with these three additions, becomes a convenient framework for writing
interesting programs.

3.1 Representation of lists

The list is a simple data structure widely used in non-numeric programming. A
list is a sequence of any number of items, such as ann, tennis, tom, skiing. Such
a list can be written in Prolog as:

[ann, tennis, tom, skiing]

Thisis, however, only the external appearance of lists. As we have already seen
in Chapter 2, all structured objects in Prolog are trees. Lists are no exception to
this.

How can a list be represented as a standard Prolog object? We have to
consider two cases: the list is either empty or non-empty. In the first case, the
list is simply written as a Prolog atom, []. In the second case, the list can be
viewed as consisting of two things:

(1) the first item, called the head of the list;
(2) the remaining part of the list, called the tail.

For our example list
[ann, tennis, tom, skiing]
the head is ann and the tail is the list

[tennis, tom, skiing]

64

LISTS, OPERATORS, ARITHMETIC 65

In general, the head can be anything (any Prolog object, for example, a tree or
avariable); the tail has to be a list. The head and the tail are then combined into
a structure by a special functor. The choice of this functor depends on the
Prolog implementation; we will assume here that it is the dot:

.(Head, Tail)

Since Tail is in turn a list, it is either empty or it has its own head and tail.
Therefore, to represent lists of any length no additional principle is needed.
Our example list is then represented as the term:

.(ann, .(tennis, .(tom, .(skiing, []))))

Figure 3.1 shows the corresponding tree structure. Note that the empty list
appears in the above term. This is because the one but last tail is a single item
list:

[skiing]
This list has the empty list as its tail:
[skiing] = .(skiing, [])

This example shows how the general principle for structuring data objects
in Prolog also applies to lists of any length. As our example also shows, the
straightforward notation with dots and possibly deep nesting of subterms in the
tail part can produce rather confusing expressions. This is the reason why
Prolog provides the neater notation for lists, so that they can be written as
sequences of items enclosed in square brackets. A programmer can use both
notations, but the square bracket notation is, of course, normally preferred.
We will be aware, however, that this is only a cosmetic improvement and that
our lists will be internally represented as binary trees. When such terms are

AN
i\
/

N

tom .

/N

skiing []

Figure 3.1 Tree representation of the list [ann, tennis, tom, skiing].

66 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

output they will be automatically converted into their neater form. Thus the
following conversation with Prolog is possible:

?- Listl = [a,b,c],
List2 = .(a, .(b, .(¢, []1)))-

Listl = [a,b,c]
List2 = [a,b,c]

?- Hobbiesl = .(tennis, .(music, [])),
Hobbies2 = [skiing, food],
L = [ann, Hobbies1, tom, Hobbies2].

Hobbies1 = [tennis, music]
Hobbies2 = [skiing, food]
L = [ann, [tennis,music], tom, [skiing,food]]

This example also reminds us that the elements of a list can be objects of any
kind, in particular they can also be lists.

It is often practical to treat the whole tail as a single object. For example,
let

L = [a,b,c]

Then we could write

Tail = [b,c] and L = .(a, Tail)

To express this in the square bracket notation for lists, Prolog provides another
notational extension, the vertical bar, which separates the head and the tail:

L= a| Tail]

The vertical bar notation is in fact more general: we can list any number of
elements followed by ‘|’ and the list of remaining items. Thus alternative ways
of writing the above list are:

[a,b,c]=[a | [b,c]]=[a,b]|[c]]={a,b,c|[]]

To summarize:

® A list is a data structure that is either empty or consists of two parts: a
head and a tail. The tail itself has to be a list.

® Lists are handled in Prolog as a special case of binary trees. For improved

LISTS, OPERATORS, ARITHMETIC 67

readability Prolog provides a special notation for lists, thus accepting lists
written as:

[Iteml, Item2, ...]
or

[Head | Tail]
or

[Iteml, Item2, ... | Others]

3.2 Some operations on lists

Lists can be used to represent sets although there is a difference: the order of
elements in a set does not matter while the order of items in a list does; also, the
same object can occur repeatedly in a list. Still, the most common operations
on lists are similar to those on sets. Among them are:

e checking whether some object is an element of a list, which corresponds
to checking for the set membership;

e concatenation of two lists, obtaining a third list, which corresponds to the
union of sets;

e adding a new object to a list, or deleting some object from it.

In the remainder of this section we give programs for these and some other
operations on lists.

3.2.1 Membership

Let us implement the membership relation as
member(X, L)

where X is an object and L is a list. The goal member(X, L)is true if X occurs in
L. For example,

member(b, {a,b,c])
is true,

member(b, {a,[b,c]])
is not true, but

member({b,C], [a,[b,c]])

68 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

is true. The program for the membership relation can be based on the following
observation:

Xis a member of L if either
(1) Xis the head of L, or
(2) X is a member of the tail of L.

This can be written in two clauses, the first is a simple fact and the second is a
rule:

member(X, [X | Tail]).
member(X, [Head | Tail]) :-
member(X, Tail).

3.2.2 Concatenation

For concatenating lists we will define the relation
conc(L1, L2, L3)

Here L1 and L2 are two lists, and L3 is their concatenation. For example
conc([a,b], [c,d], [a,b,c,d])

is true, but
conc([a,b], [c,d], [a,b,a,c,d])

is false. In the definition of conc we will have again two cases, depending on the
first argument, L1:

(1) If the first argument is the empty list then the second and the third
arguments must be the same list (call it L); this is expressed by the
following Prolog fact:

conc([], L, L).

(2) Ifthe first argument of conc is a non-empty list then it has a head and a tail
and must look like this:

(X[L1]

Figure 3.2 illustrates the concatenation of [X | L1] and some list L2. The
result of the concatenation is the list [X | L3] where L3 is the concatena-
tion of L1 and L2. In Prolog this is written as:

conc([X | L1], L2, [X | L3]) :-
conc(L1, L2, L3).

LISTS, OPERATORS, ARITHMETIC 69

o]

[X\l&]

Figure 3.2 Concatenation of lists.

This program can now be used for concatenating given lists, for example:

?- conc([a,b,c], [1,2,3], L).
L = [a,b,c,1,2,3]
?' COI]C([a,[b,C],d], [a’[]’b]’ L)
L =[a, [b,c], d, a, [], b]
Although the conc program looks rather simple it can be used flexibly in many

other ways. For example, we can use conc in the inverse direction for decom-
posing a given list into two lists, as follows:

?- conc(L1, L2, [a,b,c]).

L1 =]

L2 = [a,b,c];
L1 = [a]

L2 = [b,c];
L1 = [a,b]
L2 = [c];

L1 = [a,b,c]
L2 =]

no

It is possible to decompose the list [a,b,c] in four ways, all of which were found
by our program through backtracking.
We can also use our program to look for a certain pattern in a list. For

70 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

example, we can find the months that precede and the months that follow a
given month, as in the following goal:

?- conc(Before, [may | After],
[ian,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec]).

Before = [jan,feb,mar,apr]
After = [jun,jul,aug,sep,oct,nov,dec].

Further we can find the immediate predecessor and the immediate successor of
May by asking;:

?- conc(-, [Month1,may,Month2 | _],
[ian,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec]).

Month1 = apr
Month2 = jun

Further still, we can, for example, delete from some list, L1, everything that
follows three successive occurrences of z in L1 together with the three z’s. For
example:

?- L1 = [a,b,z,2,c,2,2,2,d,e],
conc(L2, {z,z,z | _], L1).

L1 = [a,b,z,2,c,2,2,2,d,€]
L2 = [a,b,z,2,c]

We have already programmed the membership relation. Using conc,
however, the membership relation could be elegantly programmed by the
clause:

memberl(X, L) :-
conc(L1, [X | L2], L).

This clause says: X is a member of list L if L can be decomposed into two lists so
that the second one has X as its head. Of course, memberl defines the same
relation as member. We have just used a different name to distinguish between
the two implementations. Note that the above clause can be written using
anonymous variables as:

memberl(X, L) :-
conc(-, [X | _], L).

It is interesting to compare both implementations of the membership relation,
member and member1. member has a rather straightforward procedural mean-
ing, which is as follows:

To check whether some X is a member of some list L:

(1) first check whether the head of L is equal to X, and then
(2) check whether X is a member of the tail of L.

LISTS, OPERATORS, ARITHMETIC 71

memberl(b,[a,b,c])

conc(L1, [b|L2],[a,b,c])

1st clause of conc 2nd clause of conc
Matching:
Matching: L1=[X|L1]
Li1=[] [b|L2] =L2
[b|L2] = [a,b,c] [a,b,c] = [X|L3]
fail because b # a This forces:

X=a, L3 =[b,c]
i
conc(L1’,[b|L2],[b,c])

1st clause of conc
Matching:

L1’ =[]

[b|L2] = [b,c]
This forces:
L2=[c]

)
succeed

Figure 3.3 Procedure memberl finds an item in a given list by sequentially searching
the list.

On the other hand, the declarative meaning of memberl is straightforward, but
its procedural meaning is not so obvious. An interesting exercise is to find how
member1 actually computes something. An example execution trace will give
some idea: let us consider the question:

?- memberl(b, [a,b,c]).

Figure 3.3 shows the execution trace. From the trace we can infer that member1
behaves similarly to member. It scans the list, element by element, until the
item in question is found or the list is exhausted.

Exercises

3.1 (a) Write a goal, using conc, to delete the last three elements from a list L
producing another list L1. Hint: L is the concatenation of L1 and a
three-element list.

72 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

(b) Write a sequence of goals to delete the first three elements and the
last three elements from a list L producing list L.2.

3.2 Define the relation
last(Item, List)

so that Item is the last element of a list List. Write two versions: (a) using
the conc relation, (b) without conc.

3.2.3 Adding an item

To add anitem to a list, it is easiest to put the new item in front of the list so that
it becomes the new head. If X is the new item and the list to which X is added is
L then the resulting list is simply

X|L]

So we actually need no procedure for adding a new element in front of the list.
Nevertheless, if we want to define such a procedure explicitly, it can be written
as the fact:

add(X, L, [X | L]).

3.2.4 Deleting an item

Deleting an item, X, from a list, L, can be programmed as a relation
del(X, L, L1)

where L1 is equal to the list L with the item X removed. The del relation can be
defined similarly to the membership relation. We have, again, two cases:

(1) IfXis the head of the list then the result after the deletion is the tail of the
list.

(2) If Xisin the tail then it is deleted from there.

del(X, [X | Tail], Tail).

del(X, [Y | Tail], [Y | Taill]) :-
del(X, Tail, Taill).

Like member, del is also non-deterministic in nature. If there are several
occurrences of X in the list then del will be able to delete anyone of them by
backtracking. Of course, each alternative execution will only delete one occur-

LISTS, OPERATORS, ARITHMETIC 73

rence of X, leaving the others untouched. For example:

?- del(a, [a,b,a,a], L).

L = [b,a,a];
L = [a,b,a];
L = [a,b,a];
no

del will fail if the list does not contain the item to be deleted.

del can also be used in the inverse direction, to add an item to a list by
inserting the new item anywhere in the list. For example, if we want to insert a
atany place in the list [1,2,3] then we can do this by asking the question: Whatis
L such that after deleting a from L we obtain [1,2,3]?

?- del(a, L, [1,2,3]).
L = [a,1,2,3];

L = [1,a,2,3];

L = [1,2,a,3];

L = [1,2,3,a];

no

In general, the operation of inserting X at any place in some list List giving
BiggerList can be defined by the clause:

insert(X, List, BiggerList) :-
del(X, BiggerList, List).

In member1 we elegantly implemented the membership relation by using
conc. We can also use del to test for membership. The idea is simple: some X is
a member of List if X can be deleted from List:

member2(X, List) :-
del(X, List,).

3.2.5 Sublist

Let us now consider the sublist relation. This relation has two arguments, a list
L and a list S such that S occurs within L as its sublist. So

sublist([c,d,e], [a,b,c,d,e,f])

74 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

member(X,L)

sublist(S, L)

L2

Figure 3.4 The member and sublist relations.

is true, but
sublist([c,e], [a,b,c,d,e,f])

is not. The Prolog program for sublist can be based on the same idea as
memberl1, only this time the relation is more general (see Figure 3.4). Accord-
ingly, the relation can be formulated as:

S is a sublist of L if
(1) L can be decomposed into two lists, L1 and L2, and
(2) L2canbe decomposed into two lists, S and some L3.

As we have seen before, the conc relation can be used for decomposing lists. So
the above formulation can be expressed in Prolog as:

sublist(S, L) :-
conc(L1, L2, L),
conc(S, L3, L2).

Of course, the sublist procedure can be used flexibly in several ways. Although
it was designed to check if some list occurs as a sublist within another list it can
also be used, for example, to find all sublists of a given list:

?- sublist(S, [a,b,c]).

S=1

S = [a];

S = [a,b];
S = [a,b,c];

S = [b];

LISTS, OPERATORS, ARITHMETIC 75

ﬂ permute L

—

J L1 s a permutation of L

insert X obtaining a permutation of [X|L]

Figure 3.5 One way of constructing a permutation of the list [X | L].

3.2.6 Permutations

Sometimes it is useful to generate permutations of a given list. To this end, we
will define the permutation relation with two arguments. The arguments are
two lists such that one is a permutation of the other. The intention is to
generate permutations of a list through backtracking using the permutation
procedure, as in the following example:

?- permutation([a,b,c], P).

P = [a,b,c];
P = [a,c,b];
P = [b,a,c];

The program for permutation can be, again, based on the consideration of two
cases, depending on the first list:

(1) If the first list is empty then the second list must also be empty.

(2) Ifthe first list is not empty then it has the form [X | L], and a permutation
of such a list can be constructed as shown in Figure 3.5: first permute L
obtaining L1 and then insert X at any position into L1.

Two Prolog clauses that correspond to these two cases are:

permutation([], []).

permutation([X | L], P) :-
permutation(L, L1),
insert(X, L1, P).

76 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

One alternative to this program would be to delete an element, X, from the
first list, permute the rest of it obtaining a list P, and then add X in front of P.
The corresponding program is:

permutation2([], []).

permutation2(L, [X | P]) :-
del(X, L, L1),
permutation2(L1, P).

It is instructive to do some experiments with our permutation programs.
Its normal use would be something like this:

?- permutation([red,blue,green], P).
This would result in all six permutations, as intended:

P = red, blue, green];
P = red, green, blue];
P = [blue, red, green];
P = [blue, green, red];
P = [green, red, blue];
P = [green, blue, red];

no
Another attempt to use permutation is:
?- permutation(L, [a,b,c]).

Our first version, permutation, will now instantiate L successfully to all six
permutations. If the user then requests more solutions, the program would
never answer ‘no’ because it would get into an infinite loop trying to find
another permutation when there is none. Our second version, permutation2,
will in this case find only the first (identical) permutation and then immediately
get into an infinite loop. Thus, some care is necessary when using these
permutation relations.

Exercises
3.3 Define two predicates
evenlength(List) and oddlength(List)

so that they are true if their argument is a list of even or odd length

34

3.5

3.6

3.7

3.8

LISTS, OPERATORS, ARITHMETIC 77

respectively. For example, the list [a,b,c,d] is ‘evenlength’ and [a,b,c] is
‘oddlength’.
Define the relation

reverse(List, ReversedList)
that reverses lists. For example, reverse([a,b,c,d], [d,c,b,a]).
Define the predicate palindrome(List). A list is a palindrome if it reads
the same in the forward and in the backward direction. For example,
[m,a,d,a,m].
Define the relation

shift(List1, List2)

so that List2 is List1 ‘shifted rotationally’ by one element to the left. For
example,

2. shift([1,2,3,4,5], L1),
shift(L1, L2).

produces:
L1 = [2,3,4,5,1]
L2 = [3,4,5,1,2]
Define the relation
translate(List1, List2)

to translate a list of numbers between 0 and 9 to a list of the corresponding
words. For example:

translate([3,5,1,3], [three,five,one,three])
Use the following as an auxiliary relation:

means(0, zero). means(1, one). means(2, two). ...

Define the relation
subset(Set, Subset)

where Set and Subset are two lists representing two sets. We would like to
be able to use this relation not only to check for the subset relation, but
also to generate all possible subsets of a given set. For example:

?- subset([a,b,c], S).
S = [a,b,c];

S = [b,c);

S = [c];

78 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

S=[]
S = [a,c];
S = [a];

3.9 Define the relation
dividelist(List, List1, List2)
so that the elements of List are partitioned between List1 and List2, and
Listl and List2 are of approximately the same length. For example,
partition([a,b,c,d,e], [a,c,e], [b,d]).
3.10 Rewrite the monkey and banana program of Chapter 2 as the relation

canget(State, Actions)

to answer not just ‘yes’ or ‘no’, but to produce a sequence of monkey’s
actions that lead to success. Let Actions be such a sequence represented
as a list of moves:

Actions = [walk(door,window), push(window,middle), climb, grasp]

3.11 Define the relation
flatten(List, FlatList)

where List can be a list of lists, and FlatList is List ‘flattened’ so that the
elements of List’s sublists (or sub-sublists) are reorganized as one plain
list. For example:

?- flatten([a,b,[c,d],[1.[[[e]]].f], L).
L = [a,b,c,d,e,f]

3.3 Operator notation
In mathematics we are used to writing expressions like

2*a + b*c
where + and * are operators, and 2, a, b, c are arguments. In particular, + and
* are said to be infix operators because they appear between the two arguments.
Such expressions can be represented as trees, as in Figure 3.6, and can be
written as Prolog terms with + and * as functors:

+(*(2,a), *(b,c))

Since we would normally prefer to have such expressions written in the usual,

LISTS, OPERATORS, ARITHMETIC 79

infix style with operators, Prolog caters for this notational convenience. Prolog
will therefore accept our expression written simply as:

2*a + b*c

This will be, however, only the external representation of this object, which
will be automatically converted into the usual form of Prolog terms. Such a
term will be output for the user, again, in its external, infix form.

+
* *
2 a b c
Figure 3.6 Tree representation of the expression 2*a + b*c.

Thus expressions are dealt with in Prolog merely as a notational exten-
sion and no new principle for structuring data objects is involved. If we write
a + b, Prolog will handle it exactly as if it had been written +(a,b). In order
that Prolog properly understands expressions such as a + b*c, Prolog has to
know that * binds stronger than +. We say that + has higher precedence than
*. So the precedence of operators decides what is the correct interpretation of
expressions. For example, the expression a + b*c can be, in principle,
understood either as

+(a, *(b,c))

or as [7?0}/ ot llomeiey)

*(+a,b), ©) / R fewerds
The general rule is that the operator with the highest precedeLce is the \
principal functor of the term. If expressions containing + and * are to be \
understood according to our normal conventions, then + has to have a higher
precedence than *. Then the expression a + b*c means the same asa + (b*c).
If another interpretation is intended, then it has to be explicitly indicated by
parentheses — for example, (a + b)*c.

A programmer can define his or her own operators. So, for example, we
can define the atoms has and supports as infix operators and then write in the
program facts like:

peter has information.
floor supports table.

80 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

These facts are exactly equivalent to:

has(peter, information).
supports(floor, table).

A programmer can define new operators by inserting into the program
special kinds of clauses, sometimes called directives, which act as operator
definitions. An operator definition must appear in the program before any
expression containing that operator. For our example, the operator has can be
properly defined by the directive:

- op(600, xfx, has).

This tells Prolog that we want to use ‘has’ as an operator, whose precedence is
600 and its type is ‘xfx’, which is a kind of infix operator. The form of the
specifier ‘xfx” suggests that the operator, denoted by ‘f’, is between the two
arguments denoted by ‘x’.

Notice that operator definitions do not specify any operation or action. In
principle, no operation on data is associated with an operator (except in very
special cases). Operators are normally used, as functors, only to combine
objects into structures and not to invoke actions on data, although the word
‘operator’ appears to suggest an action.

Operator names are atoms, and their precedence must be in some range
which depends on the implementation. We will assume that the range is
between 1 and 1200.

There are three groups of operator types which are indicated by type
specifiers such as xfx. The three groups are:

(1) infix operators of three types:
xfx xfy yfx

(2) prefix operators of two types:
fx fy

(3) postfix operators of two types:

xf yf

The specifiers are chosen so as to reflect the structure of the expression where
‘' represents the operator and ‘x’ and ‘y’ represent arguments. An ‘f appearing
between the arguments indicates that the operator is infix. The prefix and
postfix specifiers have only one argument, which follows or precedes the
operator respectively.

There is a difference between ‘x” and ‘y’. To explain this we need to
introduce the notion of the precedence of argument. If an argument is enclosed
in parentheses or it is an unstructured object then its precedence is 0; if an
argument is a structure then its precedence is equal to the precedence of its

LISTS, OPERATORS, ARITHMETIC 81

Yo d >

prec. 0 prec. 0

b c
precedence 500 precedence 500
Interpretation 1: (a—b) —¢ Interpretation 2: a — (b — ¢)
Figure 3.7 Two interpretations of the expression a — b — ¢ assuming that ‘-’ has
precedence 500. If ‘=’ is of type yfx, then interpretation 2 is invalid because the

precedence of b — c is not less than the precedence of *—’.

principal functor. ‘x’ represents an argument whose precedence must be strictly
lower than that of the operator. ‘y’ represents an argument whose precedence
is lower or equal to that of the operator.

These rules help to disambiguate expressions with several operators of
the same precedence. For example, the expression

a-b-c¢

is normally understood as (a — b) — ¢, and not as a — (b — ¢). To achieve the
normal interpretation the operator ‘=’ has to be defined as yfx. Figure 3.7
shows why the second interpretation is then ruled out.

As another example consider the prefix operator not. If not is defined as
fy then the expression

not not p

is legal; but if not is defined as fx then this expression is illegal because the
argument to the first not is not p, which has the same precedence as not itself. In
this case the expression has to be written with parentheses:

not (not p)

For convenience, some operators are predefined in the Prolog system so
that they can be readily used and no definition is needed for them. What these
operators are and what their precedences are depends on the implementation
of Prolog. We will assume that this set of ‘standard’ operators is as if defined by
the clauses in Figure 3.8. As Figure 3.8 also shows, several operators can be
declared by one clause if they all have the same precedence and if they are all of
the same type. In this case the operators’ names are written as a list.

The use of operators can greatly improve the readability of programs. As
an example let us assume that we are writing a program for manipulating

82 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

= op(1200, xfx, ’:-).

- op(1200, fx, [:-, 7-]).

- op(1100, xfy, ;).

- op(1000, xfy, *,’).

= op(700, xfx, [=,is, <, >, =<,>=, ==, =\=, \==, =:=]).
- op(500, yfx, [+, -]).

= op(500, fx, [+, —, not]).

- op(400, yfx, [*, /, div]).

= op(300, xfx, mod).

Figure 3.8 A set of predefined operators.

Boolean expressions. In such a program we may want to state, for example,
one of de Morgan’s equivalence theorems, which can in mathematics be
written as:

~(A&B) <===> ~Av-~B
One way to state this in Prolog is by the clause:
equivalence(not(and(A, B)), or(not(A), not(B))).

However, it is in general a good programming practice to try to retain as much
resemblance as possible between the original problem notation and the nota-
tion used in the program. In our example, this can be achieved almost com-
pletely by using operators. A suitable set of operators for our purpose can be
defined as:

- op(800, xfx, <===>),
- op(700, xfy, v).

- op(600, xfy, &).

- op(500, fy, ~).

Now the de Morgan’s theorem can be written as the fact:

~(A & B) <===> ~Av ~B.
According to our specification of operators above, this term is understood as
shown in Figure 3.9.

To summarize:

® The readability of programs can be often improved by using the operator
notation. Operators can be infix, prefix or postfix.

LISTS, OPERATORS, ARITHMETIC 83

/&\B]

Figure 3.9 Interpretation of the term ~(A & B) <===> ~Av~B.

| /N

e Inprinciple, no operation on data is associated with an operator except in
special cases. Operator definitions do not define any action, they only
introduce new notation. Operators, as functors, only hold together com-
ponents of structures.

e A programmer can define his or her own operators. Each operator is
defined by its name, precedence and type.

e The precedence is an integer within some range, say between 1 and 1200.
The operator with the highest precedence in the expression is the princi-
pal functor of the expression. Operators with lowest precedence bind
strongest.

e The type of the operator depends on two things: (1) the position of the
operator with respect to the arguments, and (2) the precedence of the
arguments compared to the precedénce of the operator itself. In a
specifier like xfy, x indicates an argument whose precedence is strictly
lower than that of the operator; y indicates an argument whose prece-
dence is less than or equal to that of the operator.

Exercises
3.12 Assuming the operator definitions

- op(300, xfx, plays).
- op(200, xfy, and).

then the following two terms are syntactically legal objects:

Term1 = jimmy plays football and squash
Term2 = susan plays tennis and basketball and volleyball

How are these terms understood by Prolog? What are their principal
functors and what is their structure?

84

3.13

3.14

3.15

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Suggest an appropriate definition of operators (‘was’, ‘of’, ‘the’) to be
able to write clauses like

diana was the secretary of the department.

and then ask Prolog:

?- Who was the secretary of the department.
Who = diana

?- diana was What.
What = the secretary of the department

Consider the program:

t(0+1, 1+0).
t(X+0+1, X+1+0).

t(X+1+1, Z) -
t(X+1, X1),
t(X1+1, Z).

How will this program answer the following questions if ‘+ is an infix
operator of type yfx (as usual):

(a) 7- t(0+1, A).

(b) - t(0+1+1, B).

() > t(140+1+1+1, C).
(d) - t D, 1+1+1+0).

In the previous section, relations involving lists were written as:

member(Element, List),
conc(Listl, List2, List3),
del(Element, List, NewList), ...

Suppose that we would prefer to write these relations as:

Element in List,
concatenating List1l and List2 gives List3,
deleting Element from List gives NewList, ...

Define ‘in’, ‘concatenating’, ‘and’, etc. as operators to make this
possible. Also, redefine the corresponding procedures.

3.4 Arithmetic

Prolog is mainly a language for symbolic computation where the need for
numerical calculation is comparatively modest. Accordingly, the means for

LISTS, OPERATORS, ARITHMETIC 85

doing arithmetic in Prolog are also rather simple. Some of the predefined
operators can be used for basic arithmetic operations. These are:

+ addition

- subtraction

* multiplication

/ division

mod modulo, the remainder of integer division

Notice that this is an exceptional case in which an operator may in fact invoke
an operation. But even in such cases an additional indication to perform the
action will be necessary. Prolog knows how to carry out the calculation denoted
by these operators, but this is not entirely sufficient for direct use. The
following question is a naive attempt to request arithmetic computation:

- X=1+2.

Prolog will ‘quietly’ answer

X=1+2

and not X = 3 as we might possibly expect. The reason is simple: the expression
1 + 2 merely denotes a Prolog term where + is the functor and 1 and 2 are its
arguments. There is nothing in the above goal to force Prolog to actually
activate the addition operation. A special predefined operator, is, is provided
to circumvent this problem. The is operator will force evaluation. So the right
way to invoke arithmetic is:

7- Xisl+2.

Now the answer will be:
X=3

The addition here was carried out by a special procedure that is associated with
the operator +. We call such procedures built-in procedures.

There is no generally agreed notational convention for arithmetic in
Prolog, so different implementations of Prolog may use somewhat different

notations. For example, the ‘/’ operator may denote integer division or real
division, depending on the implementation. In this book, we will assume that /’
denotes real division, and that the div operator denotes integer division.
Accordingly, the question

?- Xis 3/2,
Y is 3 div 2.

8 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

is answered by

X=15
Y=1

The left argument of the is operator is a simple object. The right argu-
ment is an arithmetic expression composed of arithmetic operators, numbers
and variables. Since the is operator will force the evaluation, all the variables in
the expression must already be instantiated to numbers at the time of execution
of this goal. The precedence of the predefined arithmetic operators (see Figure
3.8) is such that the associativity of arguments with operators is the same as
normally in mathematics. Parentheses can be used to indicate different associa-
tions. Note that +, —, *, / and div are defined as yfx, which means that
evaluation is carried out from left to right. For example,

Xis5-2-1
is interpreted as
Xis(5-2)-1

Arithmetic is also involved when comparing numerical values. We can,
for example, test whether the product of 277 and 37 is greater than 10000 by the
goal:

?- 277 * 37 > 10000.

yes

Note that, similarly to is, the ‘>’ operator also forces the evaluation.
Suppose that we have in the program a relation born that relates the

names of people with their birth years. Then we can retrieve the names of

people born between 1950 and 1960 inclusive with the following question:

?- born(Name, Year),
Year >= 1950,
Year =< 1960.

The comparison operators are as follows:

X>Y X is greater than Y

X<Y Xis less than Y

X >= Y Xis greater than or equal to Y

X =< Y Xislessthan or equal to Y

X =:= Y the values of X and Y are equal

X =\= Y the values of X and Y are not equal

LISTS, OPERATORS, ARITHMETIC 87

3

Notice the difference between the matching operators ‘=" and ‘=:="; for
example, in the goals X =Y and X =:=Y. The first goal will cause the matching
of the objects X and Y, and will, if X and Y match, possibly instantiate some
variables in X and Y. There will be no evaluation. On the other hand, X =:=
causes the arithmetic evaluation and cannot cause any instantiation of varia-
bles. These differences are illustrated by the following examples:

- 1+4+2==2+1.
yes
2-1+2=2+1.

no
2-1+A=B+2.

A=2
B=1

Let us further illustrate the use of arithmetic operations by two simple
examples. The first involves computing the greatest common divisor; the
second, counting the items in a list.

Given two positive integers, X and Y, their greatest common divisor, D,
can be found according to three cases:

(1) If XandY are equal then D is equal to X.

(2) If X <Y then D is equal to the greatest common divisor of X and the
difference Y — X.

(3) If Y < X then do the same as in case (2) with X and Y interchanged.

It can be easily shown by an example that these three rules actually work.
Choosing, for example, X = 20 and Y = 25, the above rules would give D = 5
after a sequence of subtractions.

These rules can be formulated into a Prolog program by defining a three-
argument relation, say

ged(X, Y, D)

The three rules are then expressed as three clauses, as follows:

ged(X, X, X).

ged(X, Y, D) :-
X<Y,
YlisY-X,
ged(X, Y1, D).

88 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

ged(X, Y, D) :-
Y <X,
ged(Y, X, D).

Of course, the last goal in the third clause could be equivalently replaced by the
two goals:

XlisX-Y,
ged(X1, Y, D)

Our next example involves counting, which usually requires some
arithmetic. An example of such a task is to establish the length of a list; that is,
we have to count the items in the list. Let us define the procedure

length(List, N)

which will count the elements in a list List and instantiate N to their number. As
was the case with our previous relations involving lists, it is useful to consider
two cases:

(1) If the list is empty then its length is 0.

(2) Ifthe listis not empty then List = [Head | Tail]; then its length is equal to
1 plus the length of the tail Tail.

These two cases correspond to the following program:

length([], 0).

length([| Tail], N) :-
length(Tail, N1),
Nis 1+ N1.

An application of length can be:
?- length([a,b,[c,d],e], N).
N=4

Note that in the second clause of length, the two goals of the body cannot be
swapped. The reason for this is that N1 has to be instantiated before the goal

Nis1+ N1

can be processed. With the built-in procedure is, a relation has been introduced
that is sensitive to the order of processing and therefore the procedural
considerations have become vital.

LISTS, GPERATORS, ARITHMETIC 89

It is interesting to see what happens if we try to program the length
relation without the use of is. Such an attempt can be:

length1([], 0).

length1([_ | Tail], N) :-
length1(Tail, N1),
N =1+ N1

Now the goal

?- lengthl([a,b,[c,d],e], N).
will produce the answer:

N = 1+(1+(1+(1+0))).

The addition was never explicitly forced and was therefore not carried out at
all. Butin length1 we can, unlike in length, swap the goals in the second clause:

length1([| Tail], N) :-
N =1+ N1,
length1(Tail, N1).

This version of lengthl will produce the same result as the original version. It
can also be written shorter, as follows,

length1([~ | Tail], 1 + N) :-
length1(Tail, N).

still producing the same result. We can, however, use lengthl to find the
number of elements in a list as follows:

?- lengthl([a,b,c], N), Length is N.

N = 1+(1+(1+0))
Length =3

To summarize:

Built-in procedures can be used for doing arithmetic.

Arithmetic operations have to be explicitly requested by the built-in
procedure is. There are built-in procedures associated with the pre-
defined operators +, —, *,/, div and mod.

® At the time that evaluation is carried out, all arguments must be already
instantiated to numbers.

90

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

The values of arithmetic expressions can be compared by operators such
as <, =<, etc. These operators force the evaluation of their arguments.

Exercises

3.16

3.17

3.19

3.20

3.21

Define the relation
max(X, Y, Max)

so that Max is the greater of two numbers X and Y.

Define the predicate
maxlist(List, Max)

so that Max is the greatest number in the list of numbers List.

Define the predicate
sumlist(List, Sum)

so that Sum is the sum of a given list of numbers List.

Define the predicate
ordered(List)

which is true if List is an ordered list of numbers. For example,
ordered([1,5,6,6,9,12]).

Define the predicate

subsum(Set, Sum, SubSet)

so that Set is a list of numbers, SubSet is a subset of these numbers, and
the sum of the numbers in SubSet is Sum. For example:

?- subsum([1,2,5,3,2], 5, Sub).

Sub = [1,2,2];
Sub = [2,3];
Sub = [5];

Define the procedure
between(N1, N2, X)

which, for two given integers N1 and N2, generates through backtracking
all the integers X that satisfy the constraint N1 £ X < N2.

LISTS, OPERATORS, ARITHMETIC 91

3.22 Define the operators ‘if’, ‘then’, ‘else’ and =" so that the following

becomes a legal term:
if X >YthenZ:=XelseZ:=Y

Choose the precedences so that ‘if” will be the principal functor. Then
define the relation ‘if’ as a small interpreter for a kind of ‘if-then-else’
statement of the form

if Vall > Val2 then Var := Val3 else Var := Val4

where Vall, Val2, Val3 and Val4 are numbers (or variables instantiated
to numbers) and Var is a variable. The meaning of the ‘if’ relation should
be: if the value of Vall is greater than the value of Val2 then Var is
instantiated to Val3, otherwise to Val4. Here is an example of the use of
this interpreter:

- X=2,Y=3,
Val2 is 2*X,
Vald is 4*%X,
if Y > Val2 then Z := Y else Z := Val4,
if Z > 5then W:=1else W:= 0.

X =2
Y =3
Z =8
w=1
Summary

® The list is a frequently used structure. It is either empty or consists of a
head and a tail which is a list as well. Prolog provides a special notation for
lists.

e Common operations on lists, programmed in this chapter, are: list mem-
bership, concatenation, adding an item, deleting an item, sublist.

e The operator notation allows the programmer to tailor the syntax of
programs toward particular needs. Using operators the readability of
programs can be greatly improved.

e New operators are defined by the directive op, stating the name of an
operator, its type and precedence.

e In principle, there is no operation associated with an operator; operators
are merely a syntactic device providing an alternative syntax for terms.

)

Arithmetic is done by built-in procedures. Evaluation of an arithmetic

expression is forced by the procedure is and by the comparison predicates
<, =<, etc.

92 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

® Concepts introduced in this chapter are:

list, head of list, tail of list

list notation

operators, operator notation
infix, prefix and suffix operators
precedence of an operator
arithmetic built-in procedures

Using Structures:
4 Example Programs

Data structures, with matching, backtracking and arithmetic, are a powerful
programming tool. In this chapter we will develop the skill of using this tool
through programming examples: retrieving structured information from a
database, simulating a non-deterministic automaton, travel planning and eight
queens on the chessboard. We will also see how the principle of data abstrac-
tion can be carried out in Prolog.

4.1 Retrieving structured information from a database

This exercise develops the skill of representing and manipulating structured
data objects. It also illustrates Prolog as a natural database query language.
A database can be naturally represented in Prolog as a set of facts. For
example, a database about families can be represented so that each family is
described by one clause. Figure 4.1 shows how the information about each
family can be structured. Each family has three components: husband, wife
and children. As the number of children varies from family to family the
children are represented by a list that is capable of accommodating any number
of items. Each person is, in turn, represented by a structure of four compo-
nents: name, surname, date of birth, job. The job information is ‘unemployed’,

family
Pers/erson\.
tom fox date works ann fox date unemployed person .
SN\ AN NN N\
7 may 1950 bbc 15200 9 may 1951 pat fox date unemployed person []
JIN /NN
5 may 1973 jim fox date unemployed
/TN
5 may 1973

Figure 4.1 Structuring information about the family.

93

94 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

or it specifies the working organization and salary. The family of Figure 4.1 can
be stored in the database by the clause:

family(
person(tom, fox, date(7,may,1950), works(bbc,15200)),
person(ann, fox, date(9,may,1951), unemployed),
[person(pat, fox, date(5,may,1973), unemployed),
person(jim, fox, date(5,may,1973), unemployed)]).

Our database would then be comprised of a sequence of facts like this describ-
ing all families that are of interest to our program.

Prolog is, in fact, a very suitable language for retrieving the desired
information from such a database. One nice thing about Prolog is that we can
refer to objects without actually specifying all the components of these objects.
We can merely indicate the structure of objects that we are interested in, and
leave the particular components in the structures unspecified or only partially
specified. Figure 4.2 shows some examples. So we can refer to all Armstrong
families by:

family(person(_, armstrong, _, _), _,)

(a) family (b) family

TN T

person - -

AN AN

- []

(c) family

/Pell'son\
AN VN
AN
VAN

Figure4.2 Specifying objects by their structural properties: (a) any Armstrong family;
(b) any family with exactly three children; (c) any family with at least three children.
Structure (c) makes provision for retrieving the wife’s name through the instantiation of
the variables Name and Surname. ’

USING STRUCTURES: EXAMPLE PROGRAMS 95

The underscore characters denote different anonymaus variables; we do not
care about their values. Further, we can refer to all families with three children
by the term:

family(_, _, [, -, -])

To find all married women that have at least three children we can pose the
question:

?- family(-, person(Name, Surname, _,), [, -, _ |]).

The point of these examples is that we can specify objects of interest not by
their content, but by their structure. We only indicate their structure and leave
their arguments as unspecified slots.

We can provide a set of procedures that can serve as a utility to make the
interaction with the database more comfortable. Such utility procedures could
be part of the user interface. Some useful utility procedures for our database
are:

husband(X) :- % X is a husband
family(X, _, _).

wife(X) :- % X is a wife
family(_, X, _).

child(X) :- % X is a child

family(_, _, Children),
member(X, Children).

member(X, [X | L]).

member(X, [Y|L]) :-
member(X, L).

exists(Person) :- % Any person in the database
husband(Person);
wife(Person);
child(Person).

dateofbirth(person(_, _, Date, _), Date).
salary(person(_, _, _, works(_, S)), S). % Salary of working person

salary(person(_, _, _, unemployed), 0). % Salary of unemployed

We can use these utilities, for example, in the following queries to the
database:

® Find the names of all the people in the database:

?- exists(person(Name, Surname, _, _)).

96 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

® Find all children born in 1981:

?- child(X),
dateofbirth(X, date(_, _, 1981)).

® Find all employed wives:
?- wife(person(Name, Surname, _, works(_, _))).
® Find the names of unemployed people who were born before 1963:

?- exists(person(Name, Surname, date(_, _, Year), unemployed)),
Year < 1963.

® Find people born before 1950 whose salary is less than 8000:
?- exists(Person),
dateofbirth(Person, date(_, _, Year)),
Year < 1950,
salary(Person, Salary),
Salary < 8000.
® Find the names of families with at least three children:

?- family(person(-, Name, _,), _, [, -, - | -]).

To calculate the total income of a family it is useful to define the sum of
salaries of a list of people as a two-argument relation:

total(List_of_people, Sum_of_their_salaries)

This relation can be programmed as:

total([], 0). % Empty list of people
total([Person | List], Sum) :-
salary(Person, S), % S: salary of first person
total(List, Rest), % Rest: sum of salaries of others

Sum is S + Rest.

The total income of families can then be found by the question:

?- family(Husband, Wife, Children),
total([Husband, Wife | Children], Income).

Let the length relation count the number of elements of a list, as defined in

USING STRUCTURES: EXAMPLE PROGRAMS 97

Section 3.4. Then we can specify all families that have an income per family
member of less than 2000 by:

?- family(Husband, Wife, Children),
total([Husband, Wife | Children], Income),
length([Husband, Wife | Children], N), % N: size of family
Income/N < 2000.

Exercises
4.1 Write queries to find the following from the family database:

(a) names of families without children;

(b) all employed children;

(c) names of families with employed wives and unemployed husbands;
(d) all the children whose parents differ in age by at least 15 years.

4.2 Define the relation
twins(Child1, Child2)

to find twins in the family database.

4.2 Doing data abstraction

Data abstraction can be viewed as a process of organizing various pieces of
information into natural units (possibly hierarchically), thus structuring the
information into some conceptually meaningful form. Each such unit of infor-
mation should be easily accessible in the program. Ideally, all the details of
implementing such a structure should be invisible to the user of the structure —
the programmer can then just concentrate on objects and relations between
them. The point of the process is to make the use of information possible
without the programmer having to think about the details of how the informa-
tion is actually represented.

Let us discuss one way of carrying out this principle in Prolog. Consider
our family example of the previous section again. Each family is a collection of
pieces of information. These pieces are all clustered into natural units such as a
person or a family, so they can be treated as single objects. Assume again that
the family information is structured as in Figure 4.1. Let us now define some
relations through which the user can access particular components of a family
without knowing the details of Figure 4.1. Such relations can be called selectors
as they select particular components. The name of such a selector relation will
be the name of the component to be selected. The relation will have two

98 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

arguments: first, the object that contains the component, and second, the
component itself:

selector_relation(Object, Component_selected)

Here are some selectors for the family structure:

husband(family(Husband, _, _), Husband).
wife(family(_, Wife, _), Wife).
children(family(_, _, ChildList), ChildList).

We can also define selectors for particular children:

firstchild(Family, First) :-
children(Family, [First | _]).

secondchild(Family, Second) :-
children(Family, [_, Second | _]).

We can generalize this to selecting the Nth child:

nthchild(N, Family, Child) :-
children(Family, ChildList),
nth_member(N, ChildList, Child). % Nth element of a list

Another interesting object is a person. Some related selectors according
to Figure 4.1 are:

firstname(person(Name, _, _, _), Name).
surname(person(_, Surname, _, _), Surname).

born(person(_, _, Date, _), Date).

How can we benefit from selector relations? Having defined them, we
can now forget about the particular way that structured information is repre-
sented. To create and manipulate this information, we just have to know the
names of the selector relations and use these in the rest of the program. In the
case of complicated representations, this is easier than always referring to the
representation explicitly. In our family example in particular, the user does not
have to know that the children are represented as a list. For example, assume
that we want to say that Tom Fox and Jim Fox belong to the same family and
that Jim is the second child of Tom. Using the selector relations above, we can

USING STRUCTURES: EXAMPLE PROGRAMS 99

define two persons, call them Personl and Person2, and the family. The
following list of goals does this:

firstname(Personl, tom), surname(Personl, fox), % Personl is Tom Fox
firstname(Person2, jim), surname(Person2, fox), % Person2 is Jim Fox
husband(Family, Personl),

secondchild(Family, Person2)

The use of selector relations also makes programs easier to modify.
Imagine that we would like to improve the efficiency of a program by changing
the representation of data. All we have to do is to change the definitions of the
selector relations, and the rest of the program will work unchanged with the
new representation.

Exercise
4.3 Complete the definition of nthchild by defining the relation
nth_member(N, List, X)

which is true if X is the Nth member of List.

4.3 Simulating a non-deterministic automaton

This exercise shows how an abstract mathematical construct can be translated
into Prolog. In addition, our resulting program will be much more flexible than
initially intended.

A non-deterministic finite automaton is an abstract machine that reads as
input a string of symbols and decides whether to accept or to reject the input
string. An automaton has a number of states and it is always in one of the states.
It can change its state by moving from the current state to another state. The
internal structure of the automaton can be represented by a transition graph
such as that in Figure 4.3. In this example, s,, s,, 5, and s, are the states of the
automaton. Starting from the initial state (s, in our example), the automaton
moves from state to state while reading the input string. Transitions depend on
the current input symbol, as indicated by the arc labels in the transition graph.

A transition occurs each time an input symbol is read. Note that transi-
tions can be non-deterministic. In Figure 4.3, if the automaton is in state s, and
the current input symbol is a then it can transit into s, or s,. Some arcs are
labelled null denoting the ‘null symbol’. These arcs correspond to ‘silent
moves’ of the automaton. Such a move is said to be silent because it occurs
without any reading of input, and the observer, viewing the automaton as a
black box, will not be able to notice that any transition has occurred.

The state s, is double circled, which indicates that it is a final state. The

100 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

b

Figure 4.3 An example of a non-deterministic finite automaton.

automaton is said to accept the input string if there is a transition path in the
graph such that

(1) it starts with the initial state,
(2) it ends with a final state, and
(3) the arc labels along the path correspond to the complete input string.

Itis entirely up to the automaton to decide which of the possible moves to
execute at any time. In particular, the automaton may choose to make or not to
make a silent move, if it is available in the current state. But abstract non-
deterministic machines of this kind have a magic property: if there is a choice
then they always choose a ‘right’ move; that is, a move that leads to the
acceptance of the input string, if such a move exists. The automaton in Figure
4.3 will, for example, accept the strings ab and aabaab, but it will reject the
strings abb and abba. It is easy to see that this automaton accepts any string that
terminates with ab, and rejects all others.

In Prolog, an automaton can be specified by three relations:

(1) A unary relation final which defines the final states of the automaton;

(2) A three-argument relation trans which defines the state transitions so
that

trans(S1, X, S2)

means that a transition from a state S1 to S2 is possible when the current
input symbol X is read.

(3) A binary relation
silent(S1, S2)

meaning that a silent move is possible from S1 to S2.

USING STRUCTURES: EXAMPLE PROGRAMS 101

first symbol rest of string

string
AN
null \\\s _-
(b)
Figure 4.4 Accepting a string: (a) by reading its first symbol X; (b) by making a silent

move.

For the automaton in Figure 4.3 these three relations are:

final(s3).

trans(sl, a, sl).
trans(sl, a, s2).
trans(s1, b, sl).
trans(s2, b, s3).
trans(s3, b, s4).

silent(s2, s4).
silent(s3, s1).

We will represent input strings as Prolog lists. So the string aab will be
represented by [a,a,b]. Given the description of the automaton, the simulator
will process a given input string and decide whether the string is accepted or
rejected. By definition, the non-deterministic automaton accepts a given string
if (starting from an initial state), after having read the whole input string, the
automaton can (possibly) be in its final state. The simulator is programmed as a

binary relation, accepts, which defines the acceptance of a string from a given
state. So

accepts(State, String)

is true if the automaton, starting from the state State as initial state, accepts the
string String. The accepts relation can be defined by three clauses. They
correspond to the following three cases:

(1) The empty string, [], is accepted from a state S if S is a final state.

(2) A non-empty string is accepted from a state S if reading the first symbol in
the string can bring the automaton into some state S1, and the rest of the
string is accepted from S1. Figure 4.4(a) illustrates.

102 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

(3) A string is accepted from a state S if the automaton can make a silent
move from S to S1 and then accept the (whole) input string from S1.
Figure 4.4(b) illustrates.

These rules can be translated into Prolog as:

accepts(S, []) :- % Accept empty string
final(S).
accepts(S, [X | Rest]) :- % Accept by reading first symbol

trans(S, X, S1),
accepts(S1, Rest).

accepts(S, String) :- % Accept by making silent move
silent(S, S1),
accepts(S1, String).

The program can be asked, for example, about the acceptance of the string
aaab by:

?- accepts(sl, [a,a,a,b]).

yes

As we have already seen, Prolog programs are often able to solve more
general problems than problems for which they were originally developed. In

our case, we can also ask the simulator which state our automaton can be in
initially so that it will accept the string ab:

?- accepts(S, [a,b]).

S =s1;
s3

Amusingly, we can also ask: What are all the strings of length 3 that are
accepted from state s,?

?- accepts(s1, [X1,X2,X3]).

Xl1=a
X2 =a
X3 =b;
X1=b
X2 =a
X3 = b;

no

USING STRUCTURES: EXAMPLE PROGRAMS 103

If we prefer the acceptable input strings to be typed out as lists then we can
formulate the question as:

?- String = [, _, _], accepts(s1, String).

String = [a,a,b];

String = [b,a,b];

no
We can make further experiments asking even more general questions, such as:
From what states will the automaton accept input strings of length 7?

Further experimentation could involve modifications in the structure of
the automaton by changing the relations final, trans and silent. The automaton

in Figure 4.3 does not contain any cyclic ‘silent path’ (a path that consists only
of silent moves). If in Figure 4.3 a new transition

silent(s1, s3)

is added then a ‘silent cycle’ is created. But our simulator may now get into
trouble. For example, the question

?- accepts(sl, [a]).

would induce the simulator to cycle in state s, indefinitely, all the time hoping
to find some way to the final state.

Exercises

4.4 Why could cycling not occur in the simulation of the original automaton
in Figure 4.3, when there was no ‘silent cycle’ in the transition graph?

4.5 Cycling in the execution of accepts can be prevented, for example, by
counting the number of moves made so far. The simulator would then be
requested to search only for paths of some limited length. Modify the
accepts relation this way. Hint: Add a third argument: the maximum
number of moves allowed:

accepts(State, String, Max_moves)

4.4 Travel planning

In this section we will construct a program that gives advice on planning air
travel. The program will be a rather simple advisor, yet it will be able to answer

104 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE
some useful questions, such as:

What days of the week is there a direct flight from London to Ljubljana?
How can I get from Ljubljana to Edinburgh on Thursday?

I have to visit Milan, Ljubljana and Zurich, starting from London on
Tuesday and returning to London on Friday. In what sequence should I

visit these cities so that I have no more than one flight each day of the
tour?

The program will be centred around a database holding the flight information.
This will be represented as a three-argument relation

timetable(Placel, Place2, List_of_flights)

where List_of_flights is a list of structured items of the form:

Departure_time / Arrival_time / Flight_number / List_of_days

List_of_days is either a list of weekdays or the atom ‘alldays’. One clause of the
timetable relation can be, for example:

timetable(london, edinburgh,
[9:40/10:50 / ba4733 / alldays,
19:40 / 20:50 / ba4833 / [mo,tu,we, th,fr,su]]).

The times are represented as structured objects with two components, hours
and minutes, combined by the operator ‘:’.

The main problem is to find exact routes between two given cities on a
given day of the week. This will be programmed as a four-argument relation:

route(Placel, Place2, Day, Route)

Here Route is a sequence of flights that satisfies the following criteria:

(1) the start point of the route is Placel;

(2) the end point is Place2;

(3) all the flights are on the same day of the week, Day;
(4) all the flights in Route are in the timetable relation;
(5) there is enough time for transfer between flights.

The route is represented as a list of structured objects of the form:

From - To : Flight_number : Departure_time

1)

)

®)

USING STRUCTURES: EXAMPLE PROGRAMS 105

We will also use the following auxiliary predicates:

flight(Placel, Place2, Day, Flight num, Dep_time, Arr_time)

This says that there is a flight, Flight_num, between Placel and Place2 on
the day of the week Day with the specified departure and arrival times.

deptime(Route, Time)
Departure time of Route is Time.
transfer(Timel, Time2)

There is at least 40 minutes between Timel and Time2, which should be
sufficient for transfer between two flights.

The problem of finding a route is reminiscent of the simulation of the

non-deterministic automaton of the previous section. The similarities of both
problems are as follows:

The states of the automaton correspond to the cities.

A transition between two states corresponds to a flight between two
cities.

The transition relation of the automaton corresponds to the timetable
relation.

The automaton simulator finds a path in the transition graph between the
initial state and a final state; the travel planner finds a route between the
start city and the end city of the tour.

Not surprisingly, therefore, the route relation can be defined similarly to the
accepts relation, with the exception that here we have no ‘silent moves’. We
have two cases:

(1)

@)

Direct flight connection: if there is a direct flight between places Placel
and Place2 then the route consists of this flight only:

route(Placel, Place2, Day, [Placel-Place2 : Fnum : Dep]) :-
flight(Placel, Place2, Day, Fnum, Dep, Arr).

Indirect flight connection: the route between places P1 and P2 consists of
the first flight, from P1 to some intermediate place P3, followed by a
route between P3 to P2. In addition, there must be enough time between

the arrival of the first flight and the departure of the second flight for
transfer.

route(P1, P2, Day, [P1-P3 : Fnum1 : Depl | Route]) :-
route(P3, P2, Day, Route),
flight(P1, P3, Day, Fnum1, Depl, Arrl),
deptime(Route, Dep2),
transfer(Arrl, Dep2).

106 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

The auxiliary relations flight, transfer and deptime are easily programmed and
are included in the complete travel planning program in Figure 4.5. Also
included is an example timetable database.

Our route planner is extremely simple and may examine paths that
obviously lead nowhere. Yet it will suffice if the flight database is not large. A
really large database would require more intelligent planning to cope with the
large number of potential candidate paths.

Some example questions to the program are as follows:

® What days of the week is there a direct flight from London to Ljubljana?

?- flight(london, ljubljana, Day, _, _,).

Day = fr;
Day = su;
no

% A FLIGHT ROUTE PLANNER
= op(50, xfy, :).

flight(Placel, Place2, Day, Fnum, Deptime, Arrtime) :-
timetable(Placel, Place2, Flightlist),
member(Deptime / Arrtime / Fnum / Daylist , Flightlist),
flyday(Day, Daylist).

member(X, [X | L]).
member(X, [Y | L]) :-
member(X, L).
flyday(Day, Daylist) :-
member(Day, Daylist).
flyday(Day, alldays) :-
member(Day, [mo,tu,we,th,fr,sa,su]).

route(P1, P2, Day [P1-P2 : Fnum : Deptime]) :- % Direct flight
flight(P1, P2, Day, Fnum, Deptime, _).

route(P1, P2, Day, [P1-P3 : Fnuml : Depl | Route]) :- % Indirect connection
route(P3, P2, Day, Route),
flight(P1, P3, Day, Fnuml, Dep1, Arrl),
deptime(Route, Dep2),
transfer(Arrl, Dep2).

deptime([P1-P2 : Fnum : Dep | _), Dep).

transfer(Hours1:Mins1, Hours2:Mins2) :-
60 * (Hours2 - Hours1) + Mins2 - Mins1 >= 40.

% A FLIGHT DATABASE

timetable(edinburgh, london,
[9:40/10:50 / bad4733 / alldays,
13:40 / 14:50 / ba4773 / alldays,

19:40 / 20:50 / ba4833 / [mo,tu,we,th,fr,su]]).

timetable(london, edinburgh,
[9:40/10:50 / ba4732 / alldays,
11:40 / 12:50 / ba4752 / alldays,

18:40 / 19:50 / ba4822 / [mo,tu,we,th,fr]]).

timetable(london, ljubljana,
[13:20/ 16:20 / ju201 / [fr],
13:20 / 16:20 / ju213 / [su]]).

timetable(london, zurich,
[9:10/11:45/ba614 / alldays,
14:45 / 17:20 / sr805 / alldays]).

timetable(london, milan,
[8:30/11:20/ba510/ alldays,
11:00 / 13:50 / az459 / alldays]).

timetable(ljubljana, zurich,
[11:30/ 12:40 / ju322 / [tu,th]]).

timetable(ljubljana, london,
[11:10/ 12:20 / yu200 / [fr],
11:25/12:20 / yu212 / [su]]).

timetable(milan, london,
[9:10/10:00 / az458 / alldays,
12:20/ 13:10 / ba511 / alldays]).

timetable(milan, zurich,
[9:25/10:15/ sr621 / alldays,
12:45 / 13:35 / sr623 / alldays]).

timetable(zurich, ljubljana,
[13:30/ 14:40 / yu323 / [tu,th]]).

timetable(zurich, london,

[9:00/9:40 / ba613 / [mo,tu,we,th,fr,sa],
16:10/ 16:55 / sr806 / [mo,tu,we,th,fr,su]]).

timetable(zurich, milan,
[7:5578:45/ sr620 / alldays]).

USING STRUCTURES: EXAMPLE PROGRAMS

107

Figure 4.5 A flight route planner and an example flight timetable.

108 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

® How can I get from Ljubljana to Edinburgh on Thursday?

?- route(ljubljana, edinburgh, th, R).

R = [ljubljana-zurich:yu322:11:30, zurich-london:sr806:16:10,
london-edinburgh:ba4822:18:40]

® How can I visit Milan, Ljubljana and Zurich, starting from London on
Tuesday and returning to London on Friday, with no more than one flight
each day of the tour? This question is somewhat trickier. It can be
formulated by using the permutation relation, programmed in Chapter 3.
We are asking for a permutation of the cities Milan, Ljubljana and Zurich
such that the corresponding flights are possible on successive days:

?- permutation([milan, ljubljana, zurich], [City1, City2, City3]),
flight(london, City1, tu, FN1, Depl, Arrl),
flight(City1, City2, we, FN2, Dep2, Arr2),
flight(City2, City3, th, FN3, Dep3, Arr3),
flight(City3, london, fr, FN4, Dep4, Arr4).
Cityl = milan
City2 = zurich
City3 = ljubljana

FN1 = ba510
Depl = 8:30

Arrl = 11:20
FN2 = sr621

Dep2 = 9:25

Arr2 = 10:15
FN3 = yu323
Dep3 = 13:30
Arr3 = 14:40
FN4 = yu200
Dep4 = 11:10
Arr4 = 12:20

4.5 The eight queens problem

The problem here is to place eight queens on the empty chessboard in such a
way that no queen attacks any other queen. The solution will be programmed
as a unary predicate

solution(Pos)

which is true if and only if Pos represents a position with eight queens that do

USING STRUCTURES: EXAMPLE PROGRAMS 109

not attack each other. It will be interesting to compare various ideas for
programming this problem. Therefore we will present three programs based on
somewhat different representations of the problem.

4.5.1 Program 1

First we have to choose a representation of the board position. One natural
choice is to represent the position by a list of eight items, each of them
corresponding to one queen. Each item in the list will specify a square of the
board on which the corresponding queen is sitting. Further, each square can be
specified by a pair of coordinates (X and Y) on the board, where each
coordinate is an integer between 1 and 8. In the program we can write such a
pair as

XY

where, of course, the ¢/’ operator is not meant to indicate division, but simply
combines both coordinates together into a square. Figure 4.6 shows one
solution of the eight queens problem and its list representation.

Having chosen this representation, the problem is to find such a list of the
form

[X1/Y1, X2/Y2, X3/Y3, ..., X8/Y8]

which satisfies the no-attack requirement. Our procedure solution will have to
search for a proper instantiation of the variables X1, Y1, X2,Y2, ..., X8,Y8. As
we know that all the queens will have to be in different columns to prevent
vertical attacks, we can immediately constrain the choice and so make the
search task easier. We can thus fix the X-coordinates so that the solution list
will fit the following, more specific template:

[/Y1, 2/Y2, 3/Y3, ..., 8/Y8]

—_ N W A LN) ©
[]

[]
12345678

Figure 4.6 A solution to the eight queens problem. This position can be specified by
the list [1/4, 2/2, 3/7, 4/3, 5/6, 6/8, 7/5, 8/8].

110 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

We are interested in the solution on a board of size 8 by 8. However, in
programming, in general, the key to the solution is often in considering a more
general problem. Paradoxically, it is often the case that the solution for the
more general problem is easier to formulate than that for the more specific,
original problem; then the original problem is simply solved as a special case of
the more general problem.

The creative part of the problem is to find the correct generalization of
the original problem. In our case, a good idea is to generalize the number of
queens (the number of columns in the list) from 8 to any number, including
zero. The solution relation can then be formulated by considering two cases:

Case 1 The list of queens is empty: the empty list is certainly a solution
because there is no attack.

Case 2 The list of queens is non-empty: then it looks like this:
[X/Y | Others]

In case 2, the first queen is at some square X/Y and the other queens are at
squares specified by the list Others. If this is to be a solution then the following
conditions must hold:

(1) There must be no attack between the queens in the list Others; that is,
Others itself must also be a solution.

(2) X and Y must be integers between 1 and 8.

(3) A queen at square X/Y must not attack any of the queens in the Ist
Others.

To program the first condition we can simply use the solution relation itself.
The second condition can be specified as follows: Y will have to be a member of
the list of integers between 1 and 8 — that is, [1,2,3,4,5,6,7,8]. On the other
hand, we do not have to worry about X since the solution list will have to match
the template in which the X-coordinates are already specified. So X will be
guaranteed to have a proper value between 1 and 8. We can implement the
third condition as another relation, noattack. All this can then be written in
Prolog as follows:

solution([X/Y | Others]) :-
solution(Others),
member(Y, [1,2,3,4,5,6,7,8]),
noattack(X/Y, Others).
It now remains to define the noattack relation:

noattack(Q, Qlist)

Again, this can be broken down into two cases:

USING STRUCTURES: EXAMPLE PROGRAMS 111

(1) If the list Qlist is empty then the relation is certainly true because there is
no queen to be attacked.

2) IfQlist is not empty then it has the form [Q1 | Qlist1] and two conditions
P
must be satisfied:
(a) the queen at Q must not attack the queen at Q1, and
(b) the queen at Q must not attack any of the queens in Qlist1.

To specify that a queen at some square does not attack another square is easy:
the two squares must not be in the same row, the same column or the same
diagonal. Our solution template guarantees that all the queens are in different
columns, so it only remains to specify explicitly that:

the Y-coordinates of the queens are different, and

they are not in the same diagonal, either upward or downward; that is,
the distance between the squares in the X-direction must not be equal to
that in the Y-direction.

Figure 4.7 shows the complete program. To alleviate its use a template list has

solution([]).

solution([X/Y | Others]) :- % First queen at X/Y, other queens at Others
solution(Others),

member(Y, [1,2,3,4,5,6,7,8]),

noattack(X/Y, Others). % First queen does not attack others
noattack(-, []). % Nothing to attack
noattack(X/Y, [X1/Y1 | Others]) :-

Y=\=Y1, % Different Y-coordinates

Y1-Y =\= X1-X, % Different diagonals

Y1-Y =\= X-X1,
noattack(X/Y, Others).

member(X, [X | L]).

member(X, [Y|L]) :-
member(X, L).

% A solution template

template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]).

Figure 4.7 Program 1 for the eight queens problem.

112 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

been added. This list can be retrieved in a question for generating solutions. So
we can now ask

?- template(S), solution(S).
and the program will generate solutions as follows:

S =1[1/4, 212, 3/7, 413, 5/6, 6/8, 7/5, 8/1];
S =[1/5, 212, 3/4, 417, 5/3, 6/8, /6, 8/1];
S =[1/3, 2/5, 312, 4/8, 5/6, 6/4, /7, 8/1];

Exercise

4.6 When searching for a solution, the program of Figure 4.7 explores
alternative values for the Y-coordinates of the queens. At which place in
the program is the order of alternatives defined? How can we easily
modify the program to change the order? Experiment with different
orders with the view of studying the executional efficiency of the
program.

4.5.2 Program 2

In the board representation of program 1, each solution had the form
[VY1, 2/Y2, 3/Y3, ..., 8/Y8]

because the queens were simply placed in consecutive columns. No informa-
tion is lost if the X-coordinates were omitted. So a more economical
representation of the board position can be used, retaining only the Y-coordi-
nates of the queens:

[Y1, Y2, Y3, ..., Y8]

To prevent the horizontal attacks, no two queens can be in the same row. This
imposes a constraint on the Y-coordinates. The queens have to occupy all the
rows 1, 2, ..., 8. The choice that remains is the order of these eight numbers.
Each solution is therefore represented by a permutation of the list

[1,2,3,4,5,6,7,8]

Such a permutation, S, is a solution if all the queens are safe. So we can write:

solution(S) :-
permutation([1,2,3,4,5,6,7,8], S),
safe(S).

USING STRUCTURES: EXAMPLE PROGRAMS 113

(b)
/e
Others ° b /
/
o/ °
=] .
x-dist = 1 x-dist=3

Figure 4.8 (a) X-distance between Queen and Others is 1. (b) X-distance between
Queen and Others is 3.

We have already programmed the permutation relation in Chapter 3, but the
safe relation remains to be specified. We can split its definition into two cases:

(1) Sisthe empty list: this is certainly safe as there is nothing to be attacked.

(2) Sis anon-empty list of the form [Queen | Others]. This is safe if the list
Others is safe, and Queen does not attack any queen in the list Others.

In Prolog, this is:

safe([]).

safe([Queen | Others]) :-
safe(Others),
noattack(Queen, Others).

The noattack relation here is slightly trickier. The difficulty is that the queens’
positions are only defined by their Y-coordinates, and the X-coordinates are
not explicitly present. This problem can be circumvented by a small generaliza-
tion of the noattack relation, as illustrated in Figure 4.8. The goal

noattack(Queen, Others)
is meant to ensure that Queen does not attack Others when the X-distance
between Queen and Others is equal to 1. What is needed is the generalization of
the X-distance between Queen and Others. So we add this distance as the third
argument of the noattack relation:

noattack(Queen, Others, Xdist)

Accordingly, the noattack goal in the safe relation has to be modified to

noattack(Queen, Others, 1)

114 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

solution(Queens) :-
permutation([1,2,3,4,5,6,7,8], Queens),
safe(Queens).

permutation([}, []).

permutation([Head | Tail], PermList) :-
permutation(Tail, PermTail),
del(Head, PermList, PermTail). % Insert Head in permuted Tail

del(A, [A | List], List).

del(A, [B | List], [B | List1]) :-
del(A, List, List1).

safe([]).

safe([Queen | Others]) :-
safe(Others),
noattack(Queen, Others, 1).

noattack(_, [],).

noattack(Y, [Y1 | Ylist], Xdist) :-
Y1-Y =\= Xdist,
Y-Y1 =\ = Xdist,
Dist1 is Xdist +.1,
noattack(Y, Ylist, Dist1).

Figure 4.9 Program 2 for the eight queens problem.

The noattack relation can now be formulated according to two cases, depend-
ing on the list Others: if Others is empty then there is no target and certainly no
attack; if Others is non-empty then Queen must not attack the first queen in
Others (which is Xdist columns from Queen) and also the tail of Others at
Xdist + 1. This leads to the program shown in Figure 4.9.

4.5.3 Program 3

Our third program for the eight queens problem will be based on the following
reasoning. Each queen has to be placed on some square; that is, into some
column, some row, some upward diagonal and some downward diagonal. To
make sure that all the queens are safe, each queen must be placed in a different
column, a different row, a different upward and a different downward diago-

USING STRUCTURES: EXAMPLE PROGRAMS 115

u=x-y
-7 -2 +7
y
8
7
6
5
4
3
2
1
123 45°%6.7 8 X
2 6 16
v=x+y

Figure 4.10 The relation between columns, rows, upward and downward diagonals.
The indicated square has coordinates: x =2,y =4, u=2-4=-2v=2+4 =6,

nal. It is thus natural to consider a richer representation system with four
coordinates:

columns

Tows

upward diagonals
downward diagonals

< 8 < =

The coordinates are not independent: given x and y, u and v are determined
(Figure 4.10 illustrates). For example, as

Uu=x-y
v=x+y

The domains for all four dimensions are:
Dx =[1,2,3,4,5,6,7,8]
Dy =[1,2,3,4,5,6,7,8]

Du = ['7a'6,'5!'4»'3s'2,'1a0,19293’4,5,6s7]
Dv = [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

116 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

The eight queens problem can now be stated as follows: select eight
4-tuples (X,Y,U,V) from the domains (X from Dx, Y from Dy, etc.), never
using the same element twice from any of the domains. Of course, once X and
Y are chosen, U and V are determined. The solution can then be, roughly
speaking, as follows: given all four domains, select the position of the first
queen, delete the corresponding items from the four domains, and then use the
rest of the domains for placing the rest of the queens. A program based on this
idea is shown in Figure 4.11. The board position is, again, represented by a list
of Y-coordinates. The key relation in this program is

sol(Ylist, Dx, Dy, Du, Dv)

which instantiates the Y-coordinates (in Ylist) of the queens, assuming that
they are placed in consecutive columns taken from Dx. All Y-coordinates and
the corresponding U and V-coordinates are taken from the lists Dy, Du and
Dv. The top procedure, solution, can be invoked by the question

?- solution(S).

This will cause the invocation of sol with the complete domains that correspond
to the problem space of eight queens.

solution(Ylist) :-

sol(Ylist, % Y-coordinates of queens
[1,2,3,4,5,6,7,8], % Domain for Y-coordinates
[1,2,3,4,5,6,7,8], % Domain for X-coordinates
[-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7], % Upward diagonals

[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]). % Downward diagonals
sol(], (I, Dy, Du, Dv).
sol([Y | Ylist], [X | Dx1], Dy, Du, Dv) :-

del(Y, Dy, Dyl), % Choose a Y-coordinate

Uis X-Y, % Corresponding upward diagonal
del(U, Du, Dul), % Remove it

Vis X+Y, % Corresponding downward diagonal
del(V, Dv, Dvl), % Remove it

sol(Ylist, Dx1, Dyl1, Dul, Dv1). % Use remaining values

del(A, [A | List], List).

del(A, [B | List], [B | Listl]) :-
del(A, List, Listl).

Figure 4.11 Program 3 for the eight queens problem.

USING STRUCTURES: EXAMPLE PROGRAMS 117

The sol procedure is general in the sense that it can be used for solving the
N-queens problem (on a chessboard of size N by N). It is only necessary to
properly set up the domains Dx, Dy, etc.

It is practical to mechanize the generation of the domains. For that we
need a procedure

gen(N1, N2, List)

which will, for two given integers N1 and N2, produce the list
List=[N1, N1+ 1, N1+ 2, ..., N2 -1, N2]

Such a procedure is:

gen(N, N, [N]).

gen(N1, N2, [N1 | List]) :-
N1 < N2,
Mis N1 + 1,
gen(M, N2, List).

The top level relation, solution, has to be accordingly generalized to
solution(N, S)

where N is the size of the board and S is a solution represented as a list of
Y-coordinates of N queens. The generalized solution relation is:

solution(N, S) :-
gen(1, N, Dxy),
Nulis1-N, Nu2isN -1,
gen(Nul, Nu2, Du),
Nv2is N + N,
gen(2, Nv2, Dv),
sol(S, Dxy, Dxy, Du, Dv).

For example, a solution to the 12-queens problem would be generated by:

?- solution(12, S).
S =11,3,5,8,10,12,6,11,2,7,9,4]

4.5.4 Concluding remarks

The three solutions to the eight queens problem show how the same problem
can be approached in different ways. We also varied the representation of data.
Sometimes the representation was more economical, sometimes it was more

118 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

explicit and partially redundant. The drawback of the more economical repre-
sentation is that some information always has to be recomputed when it is
required.

At several points, the key step toward the solution was to generalize the
problem. Paradoxically, by considering a more general problem, the solution
became easier to formulate. This generalization principle is a kind of standard
technique that can often be applied.

Of the three programs, the third one illustrates best how to approach
general problems of constructing under constraints a structure from a given set
of elements.

A natural question is: Which of the three programs is most efficient? In
this respect, program 2 is far inferior while the other two programs are similar.
The reason is that permutation-based program 2 constructs complete permuta-
tions while the other two programs are able to recognize and reject unsafe
permutations when they are only partially constructed. Program 3 is the most
efficient. It avoids some of the arithmetic computation that is essentially
captured in the redundant board representation this program uses.

Exercise

4.7 Let the squares of the chessboard be represented by pairs of their
coordinates of the form X/Y, where both X and Y are between 1 and 8.

(a) Define the relation jump(Squarel, Square2) according to the knight
jump on the chessboard. Assume that Squarel is always instantiated
to a square while Square2 can be uninstantiated. For example:

?- jump(1/1, S).

S =13/2;
S = 2/3;
no

(b) Define the relation knightpath(Path) where Path is a list of squares
that represent a legal path of a knight on the empty chessboard.

(c) Using this knightpath relation, write a question to find any knight’s
path of length 4 moves from square 2/1 to the opposite edge of the
board (Y = 8) that goes through square 5/4 after the second move.

Summary

The examples of this chapter illustrate some strong points and characteristic
features of Prolog programming:

® A database can be naturally represented as a set of Prolog facts.

USING STRUCTURES: EXAMPLE PROGRAMS 119

Prolog’s mechanisms of querying and matching can be flexibly used for
retrieving structured information from a database. In addition, utility
procedures can be easily defined to further alleviate the interaction with a
particular database.

Data abstraction can be viewed as a programming technique that makes
the use of complex data structures easier, and contributes to the clarity of
progtams. It is easy in Prolog to carry out the essential principles of data
abstraction.

Abstract mathematical constructs, such as automata, can often be readily
translated into executable Prolog definitions.

As in the case of eight queens, the same problem can be approached in
different ways by varying the representation of the problem. Often,
introducing redundancy into the representation saves computation. This
entails trading space for time.

Often, the key step toward a solution is to generalize the problem.
Paradoxically, by considering a more general problem the solution may
become easier to formulate.

5 Controlling
Backtracking

We have already seen that a programmer can control the execution of a
program through the ordering of clauses and goals. In this chapter we will look
at another control facility, called ‘cut’, for preventing backtracking.

5.1 Preventing backtracking

Prolog will automatically backtrack if this is necessary for satisfying a goal.
Automatic backtracking is a useful programming concept because it relieves
the programmer of the burden of programming backtracking explicitly. On the
other hand, uncontrolled backtracking may cause inefficiency in a program.
Therefore we sometimes want to control, or to prevent, backtracking. We can
do this in Prolog by using the ‘cut’ facility.

36 X

Figure 5.1 A double-step function.

Let us first study the behaviour of a simple example program whose
execution involves some unnecessary backtracking. We will identify those
points at which the backtracking is useless and leads to inefficiency.

Consider the double-step function shown in Figure 5.1. The relation
between X and Y can be specified by three rules:

Rulel: ifX<3thenY=0
Rule2: if3<Xand X <6thenY =2
Rule3: if6<XthenY =4

120

CONTROLLING BACKTRACKING 121

This can be written in Prolog as a binary relation

f(X,Y)

as follows:
f(X,0) - X<3. % Rule 1
f(X,2) :- 3=<X,X<6. % Rule 2
f(X,4) - 6=<X., % Rule 3

This program, of course, assumes that before f(X, Y) is executed X is already
instantiated to a number, as this is required by the comparison operators.

We will make two experiments with this program. Each experiment will
reveal some source of inefficiency in the program, and we will remove each
source in turn by using the cut mechanism.

5.1.1 Experiment 1

Let us analyze what happens when the following question is posed:
- f(1,Y), 2<Y.

When executing the first goal, f(1, Y), Y becomes instantiated to 0. So the
second goal becomes

2<0

which fails, and so does the whole goal list. This is straightforward, but before
admitting that the goal list is not satisfiable, Prolog tries, through backtracking,
two useless alternatives. The detailed trace is shown in Figure 5.2.

The three rules about the f relation are mutually exclusive so that one of
them at most will succeed. Therefore we, not Prolog, know that as soon as one
rule succeeds there is no point in trying to use the others, as they are bound to
fail. In the example of Figure 5.2, rule 1 has become known to succeed at the
point indicated by ‘CUT". In order to prevent futile backtracking at this point
we have to tell Prolog explicitly not to backtrack. We can do this by using the
cut mechanism. The ‘cut’ is written as ! and is inserted between goals as a kind
of pseudo-goal. Our program, rewritten with cuts, is:

f(X,0 - X<3,L
f(X,2) - 3=<xX,X<6,!.
f(X,4) - 6 =<X.

The ! symbol will now prevent backtracking at the points that it appears in the

122 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

f(1,Y)

2<Y
rule 1 rule 2 rule 3
Y=0 Y=2 Y=4
1<3 ff; 6=<1
2<0 2<2 2<4
1 no no

CUT —»

2<0

no

Figure 5.2 At the point marked ‘CUT’ we already know that the rules 2 and 3 are
bound to fail.

program. If we now ask
- f(1,Y),2<Y.

Prolog will produce the same left-hand branch as in Figure 5.2. This branch will
fail at the goal 2 < 0. Now Prolog will try to backtrack, but not beyond the point
marked ! in the program. The alternative branches that correspond to ‘rule 2’
and ‘rule 3’ will not be generated.

The new program, equipped with cuts, is in general more efficient than
the original version without cuts. When the execution fails, the new program
will in general recognize this sooner than the original program.

To conclude, we have improved the efficiency by adding cuts. If the cuts
are now removed in this example, the program will still produce the same
result; it will perhaps only spend more time. It can be said that, in our case, by
introducing the cut we only changed the procedural meaning of the program;
that is, the declarative meaning was not affected. We will see later that using a
cut may affect the declarative meaning as well.

5.1.2 Experiment 2

Let us now perform a second experiment with the second version of our
program. Suppose we ask:

2 (7, Y).
Y =4

CONTROLLING BACKTRACKING 123

Let us analyze what has happened. All three rules were tried before the answer
was obtained. This produced the following sequence of goals:
Try rule 1: 7 < 3 fails, backtrack and try rule 2 (cut was not reached)

Try rule 2: 3 < 7 succeeds, but then 7 < 6 fails, backtrack and try rule 3 (cut
was not reached)

Try rule 3: 6 < 7 succeeds

This trace reveals another source of inefficiency. First it is established that
X < 3isnot true (7 < 3 fails). The next goalis 3 =< X (3 < 7 succeeds). But we
know that once the first test has failed the second test is bound to succeed as it is
the negation of the first. Therefore the second test is redundant and the
corresponding goal can be omitted. The same is true about the goal 6 =< Xin
rule 3. This leads to the following, more economical formulation of the three
rules:

if X<3thenY =0,
otherwise if X < 6then Y = 2,
otherwise Y = 4.

We can now omit the conditions in the program that are guaranteed to be true
whenever they are executed. This leads to the third version of the program:

f(X,0) - X<3, L

f(X,2) - X<6,!.

f(X, 4).
This program produces the same results as our original version, but is more
efficient than both previous versions. But what happens if we now remove the
cuts? The program becomes:

f(X,0) - X<3.

f(X,2) - X<6.

f(X, 4).

This may produce multiple solutions some of which are not correct. For
example:

7- f(1, Y).

-

-

9

< =
I

0
2.
4

124 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

It is important to notice that, in contrast to the second version of the program,
this time the cuts do not only affect the procedural behaviour, but also change
the declarative meaning of the program.

A more precise meaning of the cut mechanism is as follows:

Let us call the ‘parent goal’ the goal that matched the head of the
clause containing the cut. When the cut is encountered as a goal it
succeeds immediately, but it commits the system to all choices made
between the time the ‘parent goal’ was invoked and the time the cut
was encountered. All the remaining alternatives between the
parent goal and the cut are discarded.

To clarify this definition consider a clause of the form:
H :- B1,B2,...,Bm,!, ..., Bn.

Let us assume that this clause was invoked by a goal G that matched H. Then G
is the parent goal. At the moment that the cut is encountered, the system has
already found some solution of the goals B1, ..., Bm. When the cut is executed,
this (current) solution of B1, ..., Bm becomes frozen and all possible remaining
alternatives are discarded. Also, the goal G now becomes committed to this
clause: any attempt to match G with the head of some other clause is
precluded.

Let us apply these rules to the following example:
C:+-P,QR,!STU.

C :- V.

A :- B,C,D.

?7- A

Here A, B, C, D, P, etc. have the syntax of terms. The cut will affect the
execution of the goal C in the following way. Backtracking will be possible
within the goal list P, Q, R; however, as soon as the cut is reached, all

alternative solutions of the goal list P, Q, R are suppressed. The alternative
clause about C,

C :- V.
will also be discarded. However, backtracking will still be possible within the
goal list S, T, U. The ‘parent goal’ of the clause containing the cut is the goal C
in the clause

A - B,C,D.

Therefore the cut will only affect the execution of the goal C. On the other

CONTROLLING BACKTRACKING 125

hand, it will be ‘invisible’ from goal A. So automatic backtracking within the
goal list B, C, D will remain active regardless of the cut within the clause used
for satisfying C.

5.2 Examples using cut

5.2.1 Computing maximum

The procedure for finding the larger of two numbers can be programmed as a
relation

max(X, Y, Max)

where Max = X if X is greater than or equal to Y, and Max is Y if X is less than
Y. This corresponds to the following two clauses:

max(X, Y, X) - X>=Y.

max(X, Y,Y) - X<Y.

These two rules are mutually exclusive. If the first one succeeds then the
second one will fail. If the first one fails then the second must succeed.
Therefore a more economical formulation, with ‘otherwise’, is possible:

If X = Y then Max = X,
otherwise Max = Y.

This is written in Prolog using a cut as:

max(X, Y, X) - X>=Y, L
max(X, Y, Y).

5.2.2 Single-solution membership

We have been using the relation
member(X, L)
for establishing whether X is in list L. The program was:

member(X, [X | L]).
member(X, [Y | L]) :- member(X, L).

126 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

This is ‘non-deterministic’: if X occurs several times then any occurrence can be
found. Let us now change member into a deterministic procedure which will
find only the first occurrence. The change is simple: we only have to prevent
backtracking as soon as X is found, which happens when the first clause
succeeds. The modified program is:

member(X, [X | L]) :- !
member(X, [Y | L]) :- member(X, L).
This program will generate just one solution. For example:

?- member(X, [a,b,c]).
X = a;

no

5.2.3 Adding an element to a list without duplication

Often we want to add an item X to a list L so that X is added only if X is not yet
in L. If X is already in L then L remains the same because we do not want to
have redundant duplicates in L. The add relation has three arguments

add(X, L, L1)

where X is the item to be added, L is the list to which Xisto be added and L1 is
the resulting new list. Our rule for adding can be formulated as:

If X is a member of list L then L1 = L,
otherwise L1 is equal to L with X inserted.

It is easiest to insert X in front of L so that X becomes the head of L1. This is
then programmed as follows:

add(X, L, L) :- member(X, L), !.
add(X, L, [X | L]).

The behaviour of this procedure is illustrated by the following example:
?- add(a, [b,c], L).
L =[a,b,c]

?- add(X, [b,c], L).

L = [b,c]
X=b

CONTROLLING BACKTRACKING 127

?- add(a, [b,c,X], L).
L = [b,c,a]
X=a

This example is instructive because we cannot easily program the ‘non-
duplicate adding’ without the use of cut or another construct derived from the
cut. If we omit the cut in the foregoing program then the add relation will also
add duplicate items. For example:

?- add(a, [a,b,c], L).

L = [a,b,c];
L = [a,a,b,c]

So the cut is necessary here to specify the right relation, and not only to
improve efficiency. The next example also illustrates this point.

5.2.4 Classification into categories

Assume we have a database of results of tennis games played by members of a
club. The pairings were not arranged in any systematic way, so each player just
played some other players. The results are in the program represented as facts
like:

beat(tom, jim).
beat(ann, tom).
beat(pat, jim).

We want to define a relation
class(Player, Category)
that ranks the players into categories. We have just three categories:

winner: every player who won all his or her games is a winner
fighter: any player that won some games and lost some
sportsman: any player who lost all his or her games

For example, if all the results available are just those above then Ann and Pat
are winners, Tom is a fighter and Jim is a sportsman.
It is easy to specify the rule for a fighter:

X is a fighter if
there is some Y such that X beat Y and
there is some Z such that Z beat X.

128 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE
Now a rule for a winner:

X is a winner if
X beat some Y and
X was not beaten by anybody.

This formulation contains ‘not’ which cannot be directly expressed with our
present Prolog facilities. So the formulation of winner appears trickier. The
same problem occurs with sportsman. The problem can be circumvented by
combining the definition of winner with that of fighter, and using the ‘other-
wise’ connective. Such a formulation is:

If X beat somebody and X was beaten by somebody
then X is a fighter,
otherwise if X beat somebody
then X is a winner,
otherwise if X got beaten by somebody
then X is a sportsman.

This formulation can be readily translated into Prolog. The mutual exclusion of
the three alternative categories is indicated by the cuts:

class(X, fighter) :-
beat(X, _),
beat(_, X), !.

class(X, winner) :-
beat(X, _), !.

class(X, sportsman) :-
beat(_, X).

Exercises

5.1 Let a program be:

p(D).
p(2) :- .
p(3).
Write all Prolog’s answers to the following questions:

(a) ?- p(X).
(b) ?- p(X), p(Y).
(c) 2= p(X), !, p(Y).

CONTROLLING BACKTRACKING 129

5.2 The following relation classifies numbers into three classes: positive, zero
and negative:

class(Number, positive) :- Number > 0.
class(0, zero).
class(Number, negative) :- Number < 0.

Define this procedure in a more efficient way using cuts.

Define the procedure

split(Numbers, Positives, Negatives)

which splits a list of numbers into two lists: positive ones (including zero)
and negative ones. For example,

split([3,-1,0,5,-2], [3,0,5], [-1,-2])

Propose two versions: one with a cut and one without.

5.3 Negation as failure

‘Mary likes all animals but snakes’. How can we say this in Prolog? It is easy to
express one part of this statement: Mary likes any X if X is an animal. This is in
Prolog:

likes(mary, X) :- animal(X).

But we have to exclude snakes. This can be done by using a different
formulation:

If X is a snake then ‘Mary likes X’ is not true,
otherwise if X is an animal then Mary likes X.

That something is not true can be said in Prolog by using a special goal, fail,
which always fails, thus forcing the parent goal to fail. The above formulation is
translated into Prolog, using fail, as follows:

likes(mary, X) :-
snake(X), !, fail.
likes(mary, X) :-

animal(X).

The first rule here will take care of snakes: if X is a snake then the cut will
prevent backtracking (thus excluding the second rule) and fail will cause the

130 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE
failure. These two clauses can be written more compactly as one clause:

likes(mary, X) :-
snake(X), !, fail;
animal(X).
We can use the same idea to define the relation

different(X, Y)

which is true if X and Y are different. We have to be more precise, however,
because ‘different’ can be understood in several ways:

® Xoand Y are not literally the same;
® X and Y do not match;
® the values of arithmetic expressions X and Y are not equal.

Let us choose here that X and Y are different if they do not match. The key to
saying this in Prolog is:

If X and Y match then different(X, Y) fails,
otherwise different(X, Y) succeeds.

We again use the cut and fail combination:

different(X, X) :- !, fail.
different(X, Y).

This can also be written as one clause:
different(X, Y) :-

X=Y,! fail
true.

true is a goal that always succeeds.
These examples indicate that it would be useful to have a unary predicate
‘not’ such that

not(Goal)

is true if Goal is not true. We will now define the not relation as follows:

If Goal succeeds then not(Goal) fails,
otherwise not(Goal) succeeds.

CONTROLLING BACKTRACKING 131

This definition can be written in Prolog as:

not(P) :-
P, !, fail;
true.

Henceforth, we will assume that not is a built-in Prolog procedure that behaves
as defined here. We will also assume that not is defined as a prefix operator, so
that we can also write the goal

not(snake(X))
as:
not snake(X)

Many Prolog implementations do in fact support this notation. If not, then we
can always define not ourselves.

It should be noted that not defined as failure, as here, does not exactly
correspond to negation in mathematical logic. This difference can cause unex-
pected behaviour if not is used without care. This will be discussed later in the
chapter.

Nevertheless, not is a useful facility and can often be used advantageously
in place of cut. Our two examples can be rewritten with not as:

likes(mary, X) :-
animal(X),
not snake(X).

different(X, Y) :-
not (X =Y).

This certainly looks better than our original formulations. It is more natural
and is easier to read.

Our tennis classification program of the previous section can also be
rewritten, using not, in a way that is closer to the initial definition of the three
categories:

class(X, fighter) :-
beat(X,),
beat(_, X).

class(X, winner) :-
beat(X,),
not beat(_, X).

132 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

class(X, sportsman) :-
beat(-, X),
not beat(X, _).

As another example of the use of not let us reconsider program 1 for the
eight queens problem of the previous chapter (Figure 4.7). We specified the
no_attack relation between a queen and other queens. This relation can be
formulated also as the negation of the attack relation. Figure 5.3 shows a
program modified accordingly.

Exercises

5.4 Given two lists, Candidates and RuledOut, write a sequence of goals
(using member and not) that will through backtracking find all the items
in Candidates that are not in RuledOut.

5.5 Define the set subtraction relation

difference(Set1, Set2, SetDifference)
where all the three sets are represented as lists. For example:

difference([a,b,c,d], [b,d,e,f], [a,c])

solution([]).

solution([X/Y | Others]) :-
solution(Others),
member(Y, [1,2,3,4,5,6,7,8]),
not attacks(X/Y, Others).

attacks(X/Y, Others) :-
member(X1/Y1, Others),
(YI=Y;
YlisY + X1-X;
YlisY-X1+X).

member(A, [A | L]).

member(A, [B|L]) :-
member(A, L).

% Solution template

template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]).

Figure 5.3 Another eight queens program.

CONTROLLING BACKTRACKING 133

5.6 Define the predicate
unifiable(Listl, Term, List2)

where List2 is the list of all the members of List1 that match Term, but are
not instantiated by this matching. For example:

?- unifiable([X, b, t(Y)], t(a), List]).
List = [X, «(Y)]

Note that X and Y have to remain uninstantiated although the matching
with t(a) does cause their instantiation. Hint: Use not (Term1 = Term2).
If Term1 = Term2 succeeds then not (Term1 = Term2) fails and the
resulting instantiation is undone!

5.4 Problems with cut and negation

Using the cut facility we get something, but not for nothing. The advantages
and disadvantages of using cut were illustrated by examples in the previous
sections. Let us summarize, first the advantages:

(1) With cut we can often improve the efficiency of the program. The idea is
to explicitly tell Prolog: do not try other alternatives because they are
bound to fail.

(2) Using cut we can specify mutually exclusive rules; so we can express rules
of the form:

if condition P then conclusion Q,
otherwise conclusion R

In this way, cut enhances the expressive power of the language.

The reservations against the use of cut stem from the fact that we can lose
the valuable correspondence between the declarative and procedural meaning
of programs. If there is no cut in the program we can change the order of
clauses and goals, and this will only affect the efficiency of the program, not the
declarative meaning. On the other hand, in programs with cuts, a change in the
order of clauses may affect the declarative meaning. This means that we can get
different results. The following example illustrates:

p - a,b.
p :- ¢

The declarative meaning of this program is: p is true if and only if a and b are
both true or c is true. This can be written as a logic formula:

p <===> (a&b)vec

134 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

We can change the order of the two clauses and the declarative meaning
remains the same. Let us now insert a cut:

p :-al,b.
p - c
The declarative meaning is now:
p <===> (a&b)v(~a&c)

If we swap the clauses,
p - c
p - a,,b.
then the meaning becomes:
P <===> cv(a&b)

The important point is that when we use the cut facility we have to pay more
attention to the procedural aspects. Unfortunately, this additional difficulty
increases the probability of a programming error.

In our examples in the previous sections we have seen that sometimes the
removal of a cut from the program can change the declarative meaning of the
program. But there were also cases in which the cut had no effect on the
declarative meaning. The use of cuts of the latter type is less delicate, and
therefore cuts of this kind are sometimes called ‘green cuts’. From the point of
view of readability of programs, green cuts are ‘innocent’ and their use is quite
acceptable. When reading a program, green cuts can simply be ignored.

On the contrary, cuts that do affect the declarative meaning are called
‘red cuts’. Red cuts are the ones that make programs hard to understand, and
they should be used with special care.

Cut is often used in combination with a special goal, fail. In particular, we
defined the negation of a goal (not) as the failure of the goal. The negation, so
defined, is just a special (more restricted) way of using cut. For reasons of
clarity we will prefer to use not instead of the cut—fail combination (whenever
possible), because the negation is a higher level concept and is intuitively
clearer than the cutfail combination.

It should be noted that not may also cause problems, and so should also
be used with care. The problem is that not, as defined here, does not corre-
spond exactly to negation in mathematics. If we ask Prolog

?- not human(mary).

Prolog will probably answer ‘yes’. But this should not be understood as Prolog

CONTROLLING BACKTRACKING 135

saying ‘Mary is not human’. What Prolog really means to say is: ‘There is not
enough information in the program to prove that Mary is human’. This arises
because when processing a not goal, Prolog does not try to prove this goal
directly. Instead, it tries to prove the opposite, and if the opposite cannot be
proved then Prolog assumes that the not goal succeeds. Such reasoning is based
on the so-called closed world assumption. According to this assumption the
world is closed in the sense that everything that exists is in the program or can
be derived from the program. Accordingly then, if something is not in the
program (or cannot be derived from it) then it is not true and consequently its
negation is true. This deserves special care because we do not normally assume
that ‘the world is closed’: with not explicitly entering the clause

human(mary).

into our program, we do not normally mean to imply that Mary is not human.
We will, by example, further study the special care that not requires:

r(a).
q(b).
p(X) :- not r(X).

If we now ask
?- q(X), p(X).

then Prolog will answer
X=b

If we ask apparently the same question
?- p(X), q(X).

then Prolog will answer:

no

The reader is invited to trace the program to understand why we get different
answers. The key difference between both questions is that the variable X is, in
the first case, already instantiated when p(X) is executed, whereas at that point
X is not yet instantiated in the second case.

We have discussed problems with cut, which also indirectly occur in not,
in detail. The intention has been to warn users about the necessary care, not to
definitely discourage the use of cut. Cut is useful and often necessary. And
after all, the kind of complications that are incurred by cut in Prolog commonly
occur when programming in other languages as well.

136

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Summary

The cut facility prevents backtracking. It is used both to improve the
efficiency of programs and to enhance the expressive power of the
language.

® Efficiency is improved by explicitly telling Prolog (with cut) not to
explore alternatives that we know are bound to fail.

® Cut makes it possible to formulate mutually exclusive conclusions
through rules of the form:

if Condition then Conclusionl otherwise Conclusion2

® Cut makes it possible to introduce negation as failure: not Goal is defined
through the failure of Goal.

® Two special goals are sometimes useful: true always succeeds, fail always
fails.

® There are also some reservations against cut: inserting a cut may destroy
the correspondence between the declarative and procedural meaning of a
program. Therefore, it is part of good programming style to use cut with
care and not to use it without reason.

® not defined through failure does not exactly correspond to negation in
mathematical logic. Therefore, the use of not also requires special care.

Reference

The distinction between ‘green cuts’ and ‘red cuts’ was proposed by van Emden
(1982).

van Emden, M. (1982) Red and green cuts. Logic Programming Newsletter: 2.

Input and Output

In this chapter we will investigate some built-in facilities for reading data from
computer files and for outputting data to files. These procedures can also be
used for formatting data objects in the program to achieve a desired external
representation of these objects. We will also look at facilities for reading
programs and for constructing and decomposing atoms.

6.1 Communication with files

The method of communication between the user and the program that we have
been using up to now consists of user questions to the program and program
answers in terms of instantiations of variables. This method of communication
is simple and practical and, in spite of its simplicity, suffices to get the informa-
tion in and out. However, it is often not quite sufficient because it is too rigid.
Extensions to this basic communication method are needed in the following
areas:

e input of data in forms other than questions — for example, in the form of
English sentences

output of information in any format desired
input from and output to any computer file and not just the user terminal

Built-in predicates aimed at these extensions depend on the implementation of
Prolog. We will study here a simple and handy repertoire of such predicates,
which is part of many Prolog implementations. However, the implementation
manual should be consulted for details and specificities.

We will first consider the question of directing input and output to files,
and then how data can be input and output in different forms.

Figure 6.1 shows a general situation in which a Prolog program communi-
cates with several files. The program can, in principle, read data from several
input files, also called input streams, and output data to several output files,
also called output streams. Data coming from the user’s terminal is treated as
just anothemata output to the terminal is, analogously, treated
as another output stream. Both of these ‘pseudo-files’ are referred to by the

137

138 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

User
terminal
user user
Input file 1 fi Output
—> — file 3
streams file 2 — file 4 streams

Figure 6.1 Communication between a Prolog program and several files.

name user. The names of other files can be chosen by the programmer accord-
ing to the rules for naming files in the computer system used.

At any time during the execution of a Prolog program, only two files are
‘active’: one for input and one for output. These two files are called the current
input stream and the current output stream respectively. At the beginning of

execution these two streams correspond to the user’s terminal. The current
input stream can be changed to another file, Filename, by the goal

see(Filename)

Such a goal succeeds (unless there is something wrong with Filename) and
causes, as a side effect, that input to be switched from the previous input stream
to Filename. So a typical example of using the see predicate is the following
sequence of goals, which reads something from filel and then switches back to
the terminai:

see(filel),
read_from_file(Information),
see(user),

The current output stream can be changed by a goal of the form:
tell(Filename)
A sequence of goals to output some information to file3, and then redirect

succeeding output back to the terminal, is:

tell(file3),
write_on_file(Information),
tell(user),

INPUT AND OUTPUT 139
The goal
seen

closes the current input file. The goal
told

closes the current output file.

Files can only be processed sequentially. In this sense all files behave in
the same way as the terminal. Each request to read something from an input
file will cause reading at the current position in the current input stream. After
the reading, the current position will be, of course, moved to the next unread
item. So the next request for reading will start reading at this new current
position. If a request for reading is made at the end of a file, then the
information returned by such a request is the atom end_of_file. Once some
information has been read, it is not possible to reread it again.

Writing is similar; each request to output information will append this
information at the end of the current output stream. It is not possible to move
backward and to overwrite part of the file.

All files are ‘text-files’ — that is, files of characters. Characters are letters,
digits and special characters. Some of them are said to be non-printable
because when they are output on the terminal they do not appear on the screen.
They may, however, have other effects, such as spacing between columns and
lines.

There are two main ways in which files can be viewed in Prolog, depend-
ing on the form of information. One way is to consider the character as the
basic element of the file. Accordingly, one input or output request will cause a
single character to be read or written. The built-in predicates for this are get,
get0 and put.

The other way of viewing a file is to consider bigger units of information
as basic building blocks of the file. Such a natural bigger unit is the Prolog term.
So each input/output request of this type would transfer a whole term from the
current input stream or to the current output stream respectively. Predicates
for transfer of terms are read and write. Of course, in this case, the information
in the file has to be in a form that is consistent with the syntax of terms.

What kind of file organization is chosen will, of course, depend on the
problem. Whenever the problem specification will allow the information to be
naturally squeezed into the syntax of terms, we will prefer to use a file of terms.
It will then be possible to transfer a whole meaningful piece of information with
a single request. On the other hand, there are problems whose nature dictates
some other organization of files. An example is the processing of natural
language sentences, say, to generate a dialogue in English between the system
and the user. In such cases, files will have to be viewed as sequences of
characters that cannot be parsed into terms.

140 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE
6.2 Processing files of terms

6.2.1 read and write

The built-in predicate read is used for reading terms from the current input
stream. The goal

read(X)

will cause the next term, T, to be read, and this term will be matched with X. If
Xis a variable then, as a result, X will become instantiated to T. If matching
does not succeed then the goal read(X) fails. The predicate read is determinis-
tic, so in the case of failure there will be no backtrackin g to input another term.
Each term in the input file must be followed by a full stop and a space or
carriage-return.

If read(X) is executed when the end of the current input file has been
reached then X will become instantiated to the atom end_of_file.

The built-in predicate write outputs a term. So the goal

write(X)

will output the term X on the current output file. X will be output in the same
standard syntactic form in which Prolog normally displays values of variables.
A useful feature of Prolog is that the write procedure ‘knows’ to display any
term no matter how complicated it may be.

There are additional built-in predicates for formatting the output. They
insert spaces and new lines into the output stream. The goal

tab(N)

causes N spaces to be output. The predicate nl (which has no arguments) causes
the start of a new line at output.

The following examples will illustrate the use of these procedures.

Let us assume that we have a procedure that computes the cube of a
number:

cube(N, C) :-
CisN *N *N.

Suppose we want to use this for calculating the cubes of a sequence of numbers.
We could do this by a sequence of questions:

?- cube(2, X).
X=8

INPUT AND OUTPUT 141

?- cube(5, Y).
Y = 125

?- cube(12, Z).
Z=1728

For each number, we had to type in the corresponding goal. Let us now modify
this program so that the cube procedure will read the data itself. Now the

program will keep reading data and outputting their cubes until the atom stop is
read:

cube :-
read(X),
process(X).

process(stop) :- !.

process(N) :-
CisN*N *N,
write(C),
cube.

This is an example of a program whose declarative meaning is awkward to
formulate. However, its procedural meaning is straightforward: to execute
cube, first read X and then process it; if X = stop then everything has been
done, otherwise write the cube of X and recursively call the cube procedure to

process further data. A table of the cubes of numbers can be produced using
this new procedure as follows:

?- cube.
2.

8

5.

125

12.

1728
stop.

yes

The numbers 2, 5 and 12 were typed in by the user on the terminal; the other
numbers were output by the program. Note that each number entered by the
user had to be followed by a full stop, which signals the end of a term.

It may appear that the above cube procedure could be simplified. How-
ever, the following attempt to simplify is not correct:

cube :-
read(stop), !.

142 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

cube :-
read(N),
CisN*N *N,
write(C),
cube.

The reason why this is wrong can be seen easily if we trace the program with
input data 5, say. The goal read(stop) will fail when the number is read, and
this number will be lost for ever. The next read goal will input the next term. On
the other hand, it could happen that the stop signal is read by the goal read(N),
which would then cause a request to multiply non-numeric data.

The cube procedure conducts interaction between the user and the pro-
gram. In such cases it is usually desirable that the program, before reading new
data from the terminal, signals to the user that it is ready to accept the
information, and perhaps also says what kind of information it is expecting.
This is usually done by sending a ‘prompt’ signal to the user before reading.
Our cube procedure would be accordingly modified, for example, as follows:

cube :-
write(’Next item, please: *),
read(X),
process(X).

process(stop) :- !,

process(N) :-
Cis N *N * N,
write(*Cube of *), write(N), write(’is),
write(C), nl,
cube.

A conversation with this new version of cube would then be, for example, as
follows:

?- cube.

Next item, please: 5.
Cube of 5 is 125

Next item, please: 12.
Cube of 12 is 1728
Next item, please: stop.
yes

Depending on the implementation, an extra request (like ttyflush, say) after
writing the prompt might be necessary in order to force the prompt to actually
appear on the screen before reading.

In the following sections we will look at some typical examples of opera-
tions that involve reading and writing.

INPUT AND OUTPUT 143

6.2.2 Displaying lists

Besides the standard Prolog format for lists, there are several other natural
forms for displaying lists which have advantages in some situations. The
following procedure

writelist(L)

outputs a list L so that each element of L is written on a separate line:

writelist([]).

writelist([X | L}) :-
write(X), nl,
writelist(L).

If we have a list of lists, one natural output form is to write the elements of each
list in one line. To this end, we will define the procedure writelist2. An example
of its use is:

?- writelist2([[a,b,c], [d,e,f], [g,h,i]]).

abc
def
ghi

A procedure that accomplishes this is:

writelist2([]).

writelist2([L | LL]) :-
doline(L), nl,
writelist2(LL).

doline([]).

doline([X | L]) :-
write(X), tab(1),
doline(L).

A list of integer numbers can be sometimes conveniently shown as a bar
graph. The following procedure, bars, will display a list in this form, assuming
that the numbers in the list are between 0 and 80. An example of using bars is:

?- bars([3,4,6,5]).

sk

s sk skok
%k kK ok
3 3k 3K ok 3k

144 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

The bars procedure can be defined as follows:

bars([N | L]) :-
stars(N), nl,
bars(L).

stars(N) :-
N >0,
write(*),
NlisN -1,
stars(N1).

stars(N) :-
N =<0.

6.2.3 Formatting terms

Let us suppose that our program deals with families that are represented as
terms, as in Chapter 4 (Figure 4.1). Then, for example, if F is instantiated to the
term shown in Figure 4.1, the goal

write(F)

will cause this term to be output in the standard form, something like this:

family(person(tom, fox,date(7 ,may,1950),works(bbc,15200)),
person(ann,fox,date(9,may,1951),unemployed), [person(pat,
fox,date(5,may,1973),unemployed), person(jim, fox,date(5,
may, 1973),unemployed)])

This contains all the information, but the form is rather confusing as it is hard to
follow what parts of information form semantic units. We would therefore

parents

tom fox, born 7 may 1950, works bbc, salary 15200
ann fox, born 9 may 1951, unemployed

children

pat fox, born 5 may 1973, unemployed
jim fox, born 5 may 1973, unemployed

Figure 6.2 Improved format for family terms.

INPUT AND OUTPUT 145

normally prefer to have this displayed in a formatted manner; for example, as
shown in Figure 6.2. The procedure, shown in Figure 6.3,

writefamily(F)

achieves this format.

6.2.4 Processing a file of terms

A typical sequence of goals to process a whole file, F, would look something
like this:

..., see(F), processfile, see(user), ...

Here processfile is a procedure to read and process each term in F, one after

writefamily(family(Husband, Wife, Children)) :-
nl, write(parents), nl, nl,
writeperson(Husband), nl,
writeperson(Wife), nl, nl,
write(children), nl, nl,
writepersonlist(Children).

writeperson(person(Firstname, Secname, date(D,M,Y), Work)) :-
tab(4), write(Firstname),
tab(1), write(Secname),
write(’, born’),
write(D), tab(1),
write(M), tab(1),
write(Y), write(’,’),
writework(Work).

writepersonlist([]).

writepersonlist([P | L]) :-
writeperson(P), nl,
writepersonlist(L).

writework(unemployed) :-
write(unemployed).

writework(works(Comp, Sal)) :-
write(*works’), write(Comp),
write(’, salary’), write(Sal).

Figure 6.3 A program to produce the format of Figure 6.2.

146 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

another, until the end of the file is encountered. A typical schema for
processfile is:

processfile :-
read(Term),
process(Term).

process(end_of_file) :- !. % All done

process(Term) :-
treat(Term), % Process current item
processfile. % Process rest of file

Here treat(Term) represents whatever is to be done with each term. An
example would be a procedure to display on the terminal each term together
with its consecutive number. Let us call this procedure showfile. It has to have
an additional argument to count the terms read:

showfile(N) :-
read(Term),
show(Term, N).

show(end_of file, _) :- !.

show(Term, N) :-
write(N), tab(2), write(Term),
N1lisN + 1,
showfile(N1).

Another example of using this schema for processing a file is as follows.
We have a file, named filel, of terms of the form:

item(ItemNumber, Description, Price, SupplierName)

Each term describes an entry in a catalogue of items. We want to produce
another file that contains only items supplied by a specified supplier. As the
supplier, in this new file, will always be the same, his or her name need only be

written at the beginning of the file, and omitted from other terms. The
procedure will be:

makefile(Supplier)

For example, if the original catalogue is stored in filel, and we want to produce
the special catalogue on file2 of everything that Harrison supplies, then we
would use the makefile procedure as follows:

?- see(filel), tell(file2), makefile(harrison), see(user), tell(user).

INPUT AND OUTPUT 147

The procedure makefile can be defined as follows:

makefile(Supplier) :-
write(Supplier), write(°.”), nl,
makerest(Supplier).

makerest(Supplier) :-
read(Item),
process(Item, Supplier).

process(end_of_file,) :- !.

process(item(Num, Desc, Price, Supplier), Supplier) :- !,
write(item(Num, Desc, Price)),
write(’.”), nl,
makerest(Supplier).

process(—, Supplier) :-
makerest(Supplier).

Notice that process writes full stops between terms to make future reading of
the file possible by the read procedure.

Exercises
6.1 Let fbe a file of terms. Define a procedure
findterm(Term)

that displays on the terminal the first term in f that matches Term.

6.2 Let fbe a file of terms. Write a procedure
findallterms(Term)

that displays on the terminal all the terms in f that match Term. Make sure
that Term is not instantiated in the process (which could prevent its match
with terms that occur later in the file).

6.3 Manipulating characters

A character is written on the current output stream with the goal
put(C)

where Cis the ASCII code (a number between 0 and 127) of the character to be
output. For example, the question

?- put(65), put(66), put(67).

148 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

would cause the following output:

ABC

65 is the ASCII code of ‘A’, 66 of ‘B’, 67 of ‘C’.
A single character can be read from the current input stream by the goal

get0(C)

This causes the current character to be read from the input stream, and the
variable C becomes instantiated to the ASCII code of this character. A
variation of the predicate get0 is get, which is used for reading non-blank
characters. So the goal

get(C)

will cause the skipping over of all non-printable characters (blanks in particu-
lar) from the current input position in the input stream up to the first printable
character. This character is then also read and C is instantiated to its ASCII
code.

As an example of using predicates that transfer single characters let us
define a procedure, squeeze, to do the following: read a sentence from the
current input stream, and output the same sentence reformatted so that
multiple blanks between words are replaced by single blanks. For simplicity we
will assume that any input sentence processed by squeeze ends with a full stop
and that words are separated simply by one or more blanks, but no other
character. An acceptable input is then:

The robot tried to pour wine out of the bottle.
The goal squeeze would output this in the form:
The robot tried to pour wine out of the bottle.

The squeeze procedure will have a similar structure to the procedures for
processing files in the previous section. First it will read the first character,
output this character, and then complete the processing depending on this
character. There are three alternatives that correspond to the following cases:
the character is either a full stop, a blank or a letter. The mutual exclusion of
the three alternatives is achieved in the program by cuts:

squeeze :-
get0(C),
put(C),
dorest(C).

dorest(46) :- 1. % 46 is ASCII for full stop, all done

INPUT AND OUTPUT 149

dorest(32) :- I, % 32 is ASCII for blank
get(C), % Skip other blanks
put(C),
dorest(C).

dorest(Letter) :-
squeeze.

Exercise

6.3 Generalize the squeeze procedure to handle commas as well. All blanks
immediately preceding a comma are to be removed, and we want to have
one blank after each comma.

6.4 Constructing and decomposing atoms
It is often desirable to have information, read as a sequence of characters,
represented in the program as an atom. There is a built-in predicate, name,

which can be used to this end. name relates atoms and their ASCII encodings.
Thus

name(A, L)

is true if L is the list of ASCII codes of the characters in A. For example

name(zx232, [122,120,50,51,50])

is true. There are two typical uses of name:

(1) given an atom, break it down into single characters;
(2) given a list of characters, combine them into an atom.

An example of the first kind of application would be a program that deals
with orders, taxies and drivers. These would be, in the program, represented
by atoms such as:

orderl, order2, driverl, driver2, taxial, taxilux

The following predicate

taxi(X)

150 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

tests whether an atom X represents a taxi:

taxi(X) :-
name(X, Xlist),
name(taxi, Tlist),
conc(Tlist, _, Xlist). % Is word ‘taxi’ prefix of X?

conc([], L, L).

conc([A | L1], L2, [A | L3]) :-
conc(L1, L2, L3).

Predicates order and driver can be defined analogously.
The next example illustrates the use of combining characters into atoms.
We will define a predicate

getsentence(Wordlist)

that reads a free-form natural language sentence and instantiates Wordlist to
some internal representation of the sentence. A natural choice for the internal
representation, which would enable further processing of the sentence, is this:
each word of the input sentence is represented as a Prolog atom; the whole
sentence is represented as a list of atoms. For example, if the current input
stream is

Mary was pleased to see the robot fail.
then the goal getsentence(Sentence) will cause the instantiation

Sentence = [*Mary’, was, pleased, to, see, the, robot, fail]

For simplicity, we will assume that each sentence terminates with a full stop
and that there are no punctuation symbols within the sentence.

The program is shown in Figure 6.4. The procedure getsentence first
reads the current input character, Char, and then supplies this character to the
procedure getrest to complete the job. getrest has to react properly according to
three cases:

(1) Char is the full stop: then everything has been read.

(2) Char is the blank: ignore it, getsentence from rest of input.

(3) Char is a letter: first read the word, Word, which begins with Char, and
then use getsentence to read the rest of the sentence, producing Wordlist.
The cumulative result is the list [Word | Wordlist].

The procedure that reads the characters of one word is

getletters(Letter, Letters, Nextchar)

INPUT AND OUTPUT 151

/*

Procedure getsentence reads in a sentence and combines the
words into a list of atoms. For example

getsentence(Wordlist)

produces

Wordlist = [Mary’, was, pleased, to, see, the, robot, fail]

if the input sentence is:

*/

Mary was pleased to see the robot fail.

getsentence(Wordlist) :-

getO(Char),
getrest(Char, Wordlist).
getrest(46, []) :- !. % End of sentence: 46 = ASCII for ‘.’
getrest(32, Wordlist) :- !, % 32 = ASCII for blank
getsentence(Wordlist). % Skip the blank

getrest(Letter, [Word | Wordlist]) :-
getletters(Letter, Letters, Nextchar), % Read letters of current word
name(Word, Letters),
getrest(Nextchar, Wordlist).

getletters(46, [], 46) :- !. % End of word: 46 = full stop
getletters(32, [], 32) :- . % End of word: 32 = blank

getletters(Let, [Let | Letters], Nextchar) :-

get0(Char),
getletters(Char, Letters, Nextchar).

Figure 6.4 A procedure to transform a sentence into a list of atoms.

The three arguments are:

(1
)
€)

Letter is the current letter (already read) of the word being read.
Letters is the list of letters (starting with Letter) up to the end of the word.

Nextchar is the input character that immediately follows the word read.
Nextchar must be a non-letter character.

We conclude this example with a comment on the possible use of the

getsentence procedure. It can be used in a program to process text in natural

152 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

language. Sentences represented as lists of words are in a form that is suitable
for further processing in Prolog. A simple example is to look for certain
keywords in input sentences. A much more difficult task would be to under-
stand the sentence; that is, to extract from the sentence its meaning, repre-
sented in some chosen formalism. This is an important research area of
Artificial Intelligence.

Exercises
6.4 Define the relation
starts(Atom, Character)
to check whether Atom starts with Character.
6.5 Define the procedure plural that will convert nouns into their plural
form. For example:
?- plural(table, X).
X = tables

6.6 Write the procedure
search(KeyWord, Sentence)

that will, each time it is called, find a sentence in the current input file that
contains the given KeyWord. Sentence should be in its original form,
represented as a sequence of characters or as an atom (procedure
getsentence of this section can be accordingly modified).

6.5 Reading programs: consult, reconsult

We can communicate our programs to the Prolog system by means of two
built-in predicates: consult and reconsult. We tell Prolog to read a program
from a file F with the goal:

?- consult(F).

The effect will be that all clauses in F are read and will be used by Prolog when
answering further questions from the user. If another file is ‘consulted’ at some
later time during the same session, clauses from this new file are simply added
at the end of the current set of clauses.

We do not have to enter our program into a file and then request
‘consulting’ that file. Instead of reading a file, Prolog can also accept our

INPUT AND OUTPUT 153

program directly from the terminal, which corresponds to the pseudo-file user.
We can achieve this by:

?- consult(user).

Now Prolog is waiting for program clauses to be entered from the terminal.

A shorthand notation for consulting files is available in some Prolog
systems. Files that are to be consulted are simply put into a list and stated as a
goal. For example:

?- [filel, file2, file3].
This is exactly equivalent to three goals:
?- consult(filel), consult(file2), consult(file3).
The built-in predicate reconsult is similar to consult. A goal
?- reconsult(F).

will have the same effect as consult(F) with one exception. If there are clauses
in F about a relation that has been previously defined, the old definition will be
superseded by the new clauses about this relation in F. The difference between
consult and reconsult is that consult always adds new clauses while reconsult
redefines previously defined relations. reconsult(F) will, however, not affect
any relation about which there is no clause in F.

It should be noted, again, that the details of ‘consulting’ files depend on
the implementation of Prolog, as is the case with most other built-in
procedures.

Summary

e Input and output (other than that associated with querying the program)
is done using built-in procedures. This chapter introduced a simple and
practical repertoire of such procedures that can be found in many Prolog
implementations.

® Files are sequential. There is the current input stream and the current
output stream. The user terminal is treated as a file called user.
® Switching between streams is done by:

see(File) File becomes the current input stream
tell(File) File becomes the current output stream
seen close the current input stream

told close the current output stream

154

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Files are read and written in two ways:

as sequences of characters
as sequences of terms

Built-in procedures for reading and writing characters and terms are:

read(Term) input next term

write(Term) output Term

put(CharCode) output character with the given ASCII code
get0(CharCode) input next character

get(CharCode) input next ‘printable’ character

Two procedures help formatting:

nl output new line
tab(N) output N blanks

The procedure name(Atom, CodeList) decomposes and constructs
atoms. CodeList is the list of ASCII codes of the characters in Atom.

7 More Built-in Procedures

In this chapter we will examine some more built-in procedures for advanced
Prolog programming. These features enable the programming of operations
that are not possible using only the features introduced so far. One set of such
procedures manipulates terms: testing whether some variable has been instan-
tiated to an integer, taking terms apart, constructing new terms, etc. Another
useful set of procedures manipulates the ‘database’: they add new relations to
the program or remove existing ones.

The built-in procedures largely depend on the implementation of Prolog.
However, the procedures discussed in this chapter are provided by many
Prolog implementations. Various implementations may provide additional
features.

7.1 Testing the type of terms

7.1.1 Predicates var, nonvar, atom, integer, atomic

Terms may be of different types: variable, integer, atom, etc. If a term is a
variable then it can be, at some point during the execution of the program,
instantiated or uninstantiated. Further, if it is instantiated, its value can be an
atom, a structure, etc. It is sometimes useful to know what is the type of this

value. For example, we may want to add the values of two variables, X and Y,
by

ZisX+Y

Before this goal is executed, X and Y have to be instantiated to integers. If we
are not sure that X and Y will indeed be instantiated to integers then we should
check this in the program before arithmetic is done.

To this end we can use the built-in predicate integer. integer(X) is true if
X is an integer or if it is a variable whose value is an integer. We say that X must
‘currently stand for’ an integer. The goal of adding X and Y can then be
protected by the following test on X and Y:

..., integer(X), integer(Y), Zis X+ Y, ...
155

156 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

If X and Y are not both integers then no arithmetic will be attempted. So the
integer goals ‘guard’ the goal Z is X + Y before meaningless execution.

Built-in predicates of this sort are: var, nonvar, atom, integer, atomic.
Their meaning is as follows:

var(X)
This goal succeeds if X is currently an uninstantiated variable.
nonvar(X)

This goal succeeds if X is a term other than a variable, or X is an already
instantiated variable.

atom(X)
This is true if X currently stands for an atom.
integer(X)
This goal is true if X currently stands for an integer.
atomic(X)
This goal is true if X currently stands for an integer or an atom.
The following example questions to Prolog illustrate the use of these

built-in predicates:

?- var(Z), Z = 2.
Z=2

?- Z =2, var(Z).

no

?- integer(Z), Z = 2.

no

?- Z =2, integer(Z), nonvar(Z).

Z=2
?- atom(22).
no

?- atomic(22).

yes

MORE BUILT-IN PROCEDURES 157

?- atom(==>).
yes
?- atom(p(1)).

no

We will illustrate the need for atom by an example. We would like to
count how many times a given atom occurs in a given list of objects. To this
purpose we will define a procedure

count(A, L, N)

where A is the atom, L is the list and N is the number of occurrences. The first *
attempt to define count could be:

count(_, [], 0).

count(A, [A | L], N) :- !,
count(A, L, N1), % N1 = number of occurrences in tail
Nis N1 + 1.

count(A, [~ | L], N) :-
count(A, L, N).

Now let us try to use this procedure on some examples:

?- count(a, [a,b,a,a], N).
N=3

?- count(a, [a,b,X,Y], Na).
Na=3

?- count(b, [a,b,X,Y], Nb).
Nb=3

?- L =]a, b, X, Y], count(a, L, Na), count(b, L, Nb).

Na =3
Nb=1
X=a

Y=a

158 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

In the last example, X and Y both became instantiated to a and therefore we
only got Nb = 1; but this is not what we had in mind. We are interested in the
number of real occurrences of the given atom, and not in the number of terms
that match this atom. According to this more precise definition of the count
relation we have to check whether the head of the list is an atom. The modified
program is as follows:

count(_, [], 0).
count(A, (B | L], N) :-

atom(B), A =B, !, % B is atom A?
count(A, L, N1), % Count in tail
Nis N1 + 1;
count(A, L, N). % Otherwise just count the tail

The following, more complex programming exercise in solving cryp-
tarithmetic puzzles makes use of the nonvar predicate.

7.1.2 A cryptarithmetic puzzle using nonvar

A popular example of a cryptarithmetic puzzle is

DONALD
+ GERALD

ROBERT

The problem here is to assign decimal digits to the letters D, O, N, etc., so that
the above sum is valid. All letters have to be assigned different digits, otherwise
trivial solutions are possible — for example, all letters equal zero.

We will define a relation

sum(N1, N2, N)

where N1, N2 and N represent the three numbers of a given cryptarithmetic
puzzle. The goal sum(N1, N2, N3) s true if there is an assignment of digits to
letters such that N1 + N2 = N.

The first step toward finding a solution is to decide how to represent the
numbers N1, N2 and N in the program. One way of doing this is to represent
each number as a list of decimal digits. For example, the number 225 would be
represented by the list [2,2,5]. As these digits are not known in advance, an
uninstantiated variable will stand for each digit. Using this representation, the
problem can be depicted as:

[D,O,N,A,L,D]
+ [G.E,R,A,L,D]
= [R,0.B,E,R,T]

MORE BUILT-IN PROCEDURES 159

Numberl = D117D127 leiy
Number2 = D21,D22, ,Dzi,
Number3 = D31,D32, ,D}i,
Here carry - Carry from Here carry
must be 0 Qe:ight iﬁ 0
0 C QG 0
Numberl oDl

+ Number2 (oDy

= Number3 nglJ

Figure 7.1 Digit-by-digit summation. The relations at the indicated ith digit position
are: D_‘gi = (Cl + Dli + Dgi) mod 10, C= (Cl + Dli + Dli) div 10.

The task is to find such an instantiation of the variables D, O, N, etc., for which
the sum is valid. When the sum relation has been programmed, the puzzle
can be stated to Prolog by the question:

?- sum([D,0O,N,A,L,D}, [G,E,R,A,L,D], [R,0,B,E,R,T]).

To define the sum relation on lists of digits, we have to implement the
actual rules for doing summation in the decimal number system. The summa-
tion is done digit by digit, starting with the right-most digits, continuing toward
the left, always taking into account the carry digit from the right. It is also
necessary to maintain a set of available digits; that is, digits that have not yet
been used for instantiating variables already encountered. So, in general,
besides the three numbers N1, N2 and N, some additional information is
involved, as illustrated in Figure 7.1:

carry digit before the summation of the numbers
carry digit after the summation
set of digits available before the summation

remaining digits, not used in the summation

To formulate the sum relation we will use, once again, the principle of general-
ization of the problem: we will introduce an auxiliary, more general relation,
suml. suml has some extra arguments, which correspond to the above addi-
tional information:

suml(N1, N2, N, C1, C, Digits1, Digits)

N1, N2 and N are our three numbers, as in the sum relation, Cl1 is carry from

160 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

the right (before summation of N1 and N2), and C is carry to the left (after the
summation). The following example illustrates:

?- suml([H,E], [6,E], [U,S], 1, 1, [1,3,4,7,8,9], Digits).

H=38
E=3
S =17
U=4

Digits = [1,9]

As Figure 7.1 shows, C1 and C have to be 0 if N1, N2 and N are to satisfy the
sum relation. Digits1 is the list of available digits for instantiating the variables
inN1, N2 and N; Digits is the list of digits that were not used in the instantiation
of these variables. Since we allow the use of any decimal digit in satisfying the
sum relation, the definition of sum in terms of suml is as follows:

sum(N1, N2, N) -
suml(N1, N2, N, 0, 0, [0,1,2,3,4,5,6,7,8,9],).

The burden of the problem has now shifted to the sum1 relation. This
relation is, however, general enough so that it can be defined recursively. We
will assume, without loss of generality, that the three lists representing the
three numbers are of equal length. Our example problem, of course, satisfies
this constraint; if not a ‘shorter’ number can be prefixed by zeros.

The definition of sum1 can be divided into two cases:

(1) The three numbers are represented by empty lists. Then:
Suml([]’ []9 []9 0, 0’ Digs, DlgS)

(2) All three numbers have some left-most digit and the remaining digits on
their right. So they are of the form:

[D1 | N1], [D2 | N2], [D [N]
In this case two conditions must be satisfied:

(a) The remaining digits themselves, viewed as three numbers N1, N2
and N, have to satisfy the sum1 relation, giving some carry digit, C2,
to the left, and leaving some unused subset of decimal digits, Digs2.

(b) The left-most digits D1, D2 and D, and the carry digit C2 have to
satisfy the relation indicated in Figure 7.1: C2, D1 and D2 are added
giving D and a carry to the left. This condition will be formulated in
our program as a relation digitsum.

Translating this case into Prolog we have:

sumi([D1 | N1], [D2 | N2], [D | N], C1, C, Digsl, Digs) :-
suml(N1, N2, N, C1, C2, Digs1, Digs2),
digitsum(D1, D2, C2, D, C, Digs2, Digs).

MORE BUILT-IN PROCEDURES 161

It only remains to define the digitsum relation in Prolog. There is one
subtle detail that involves the use of the metalogical predicate nonvar. D1, D2
and D have to be decimal digits. If any of them is not yet instantiated then it has
to become instantiated to one of the digits in the list Digs2. Once it is instanti-
ated to one of the digits, this digit has to be deleted from the set of available
digits. If D1, D2 or D is already instantiated then, of course, none of the
available digits will be spent. This is realized in the program as a non-deter-
ministic deletion of an item from a list. If this item is non-variable then nothing

% Solving cryptarithmetic puzzles

sum(N1, N2, N) :- % Numbers represented as lists of digits
suml(N1, N2, N,
0, 0, % Carries from right and to left both 0

[0,1,2,3,4,5,6,7,8,9],). % All digits available
suml([], (], [I, 0, 0, Digits, Digits).

suml([D1 | N1], [D2 | N2}, [D | N}, C1, C, Digs1, Digs) :-
suml(N1, N2, N, C1, C2, Digsl, Digs2),
digitsum(D1, D2, C2, D, C, Digs2, Digs).

digitsum(D1, D2, C1, D, C, Digsl, Digs) :-

del(D1, Digsl1, Digs2), % Select an available digit for D1
del(D2, Digs2, Digs3), % Select an available digit for D2
del(D, Digs3, Digs), % Select an available digit for D

SisD1+ D2+ C1,
D is S mod 10,
Cis S div 10.

del(A, L, L) :-
nonvar(A), !. % A already instantiated

del(A, [A | L], L).
del(A, [B|L], [B|L1]) :-
del(A, L, L1).

% Some puzzles

puzzlel([D,O,N,A,L,D],
[G.E,R,A,L,D],
[R,0,B,E,R,T]).

puzzle2([0,S,E,N,D],
[O,M,OyR’E]!
[M,O,N,E,Y])'

Figure 7.2 A program for cryptarithmetic puzzles.

162 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

is deleted (no instantiation occurs). This is programmed as:

del(Item, List, List) :-
nonvar(Item), !.

del(Item, [Item | List], List).

del(Item, [A | List], [A | List1]) :-
del(Item, List, List1).

A complete program for cryptarithmetic puzzles is shown in Figure 7.2.
The program also includes the definition of two puzzles. The question to Prolog
about DONALD, GERALD and ROBERT, using this program, would be:

?- puzzlel(N1, N2, N), sum(N1, N2, N).

Sometimes this puzzle is made easier by providing part of the solution as an
additional constraint that D be equal 5. The puzzle in this form could be
communicated to Prolog using sum1:

?- suml([5,0,N,A,L,5],
[G,E,R,A,L,5],
[R,0,B,E,R,T],

0, 0, [0,1,2,3,4,6,7,8,9], _).

It is interesting that in both cases there is only one solution. That is, there is
only one way of assigning digits to letters.

Exercises

7.1 Write a procedure simplify to symbolically simplify summation expres-
sions with numbers and symbols (lower-case letters). Let the procedure
rearrange the expressions so that all the symbols precede numbers. These
are examples of its use:

?- simplify(1 + 1 + a, E).

E=a+2

?- simplify(1+a+4+2+b+c, E).
E=a+b+c+7

?- simplify(3 + x + x, E).
E=2*%+3

7.2 Define the procedure

add(Item, List)

to store a new element into a list. Assume that all of the elements that can
be stored are atoms. List contains all the stored elements followed by a

MORE BUILT-IN PROCEDURES 163

tail that is not instantiated and can thus accommodate new elements. For
example, let the existing elements stored be a, b and ¢. Then

List = [a, b, ¢ | Tail]
where Tail is a variable. The goal
add(d, List)
will cause the instantiation
Tail = [d | NewTail] and List = [a, b, c, d | NewTail]

Thus the structure can, in effect, grow by accepting new items. Define
also the corresponding membership relation.

7.2 Constructing and decomposing terms: =.., functor,
arg, name

There are three built-in predicates for decomposing terms and constructing
new terms: functor, arg and =... We will first look at =.., which is written as an
infix operator. The goal

Term =.. L

is true if L is a list that contains the principal functor of Term, followed by its
arguments. The following examples illustrate:

?- f(a, b)=.. L.
L =If, a, b]

?- T =.. [rectangle, 3, 5].
T = rectangle(3, 5)

- Z
z

.. Ip, X, f(X,Y)]
p(X, f(X,Y))

Why would we want to decompose a term into its components — its
functor and its arguments? Why construct a new term from a given functor and
arguments? The following example illustrates the need for this.

Let us consider a program that manipulates geometric figures. Figures
are squares, rectangles, triangles, circles, etc. They can, in the program, be
represented as terms such that the functor indicates the type of figure, and the
arguments specify the size of the figure, as follows:

square(Side)
triangle(Sidel, Side2, Side3)
circle(R)

164 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

One operation on such figures can be enlargement. We can implement this as a
three-argument relation

enlarge(Fig, Factor, Figl)

where Fig and Figl are geometric figures of the same type (same functor), and
the parameters of Fig1 are those of Fig multiplicatively enlarged by Factor. For
simplicity, we will assume that all the parameters of Fig are already known;
that is, instantiated to numbers, and so is Factor. One way of programming the
enlarge relation is:

enlarge(square(A), F, square(Al)) :-
Al is F*A.

enlarge(circle(R), F, circle(R1)) :-
R1 is F*R1.

enlarge(rectangle(A,B), F, rectangle(A1,B1)) :-
Alis F*A, B1 is F*B.

This works, but it is awkward when there are many different figure types. We
have to foresee all types that may possibly occur. Thus, we need an extra clause
for each type although each clause says essentially the same thing: take the
parameters of the original figure, multiply all the parameters by the factor, and
make a figure of the same type with new parameters.

One (unsuccessful) attempt to handle, at least, all one-parameter figures
with one clause could be:

enlarge(Type(Par), F, Type(Parl)) :-
Parl is F*Par.

However, this is normally not allowed in Prolog because the functor has to be
an atom,; so the variable Type would not be accepted syntactically as a functor.
The correct method is to use the predicate ‘=..". Then the enlarge procedure
can be stated completely generally, for any type of object, as follows:

enlarge(Fig, F, Figl) :-
Fig =.. [Type | Parameters],
multiplylist(Parameters, F, Parameters1),
Figl =.. [Type | Parameters1].

multiplylist([], _, []).
multiplylist([X | L], F, [X1 | L1]) :-
X1 is F*X, multiplylist(L, F, L1).

Our next example of using the ‘=.." predicate comes from symbolic
manipulation of formulas where a frequent operation is to substitute some

MORE BUILT-IN PROCEDURES 165

subexpression by another expression. We will define the relation

substitute(Subterm, Term, Subterm1, Term1)

as follows: if all occurrences of Subterm in Term are substituted by Subterm1
then we get Term1. For example:

?- substitute(sin(x), 2*sin(x)*f(sin(x)), t, F).
F = 2*t*f(t)

By ‘occurrence’ of Subterm in Term we will mean something in Term that
matches Subterm. We will look for occurrences from top to bottom. So the goal

?- substitute(a+b, f(a, A+B), v, F).

will produce

F =1(a,v) F =1{(a, v+v)
A=a and not A = a+b
B=b B = a+b

In defining the substitute relation we have to consider the following
decisions depending on the case:

If Subterm = Term then Term1 = Subterm1;
otherwise if Term is ‘atomic’ (not a structure)
then Term1 = Term (nothing to be substituted),
otherwise the substitution is to be carried out on the arguments of
Term.

These rules can be converted into a Prolog program, shown in Figure 7.3.

Terms that are constructed by the ‘=.." predicate can be, of course, also
used as goals. The advantage of this is that the program itself can, during
execution, generate and execute goals of forms that were not necessarily
foreseen at the time of writing the program. A sequence of goals illustrating
this effect would be something like the following:

obtain(Functor),

compute(Arglist),

Goal =.. [Functor | Arglist],
Goal

Here, obtain and compute are some user-defined procedures for getting the
components of the goal to be constructed. The goal is then constructed by
‘=..”, and invoked for execution by simply stating its name, Goal.

166 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% Relation

%

% substitute(Subterm, Term, Subterm1, Term1)

%

% is: if all occurrences of Subterm in Term are substituted
% with Subterm1 when we get Terml1.

% Case 1: Substitute whole term

substitute(Term, Term, Term1, Term1) :- !.

% Case 2: Nothing to substitute

substitute(_, Term, _, Term) :-
atomic(Term), !.

% Case 3: Do substitution on arguments

substitute(Sub, Term, Subl, Term1) :-
Term =.. [F | Args], % Get arguments
substlist(Sub, Args, Subl, Argsl), % Perform substitution on them
Terml =.. [F | Argsi].

Sl.letliSt(- []s) [])~

substlist(Sub, [Term | Terms], Subl, [Term1 | Termsl]) :-
substitute(Sub, Term, Subl, Term1),
substlist(Sub, Terms, Subl, Terms1).

Figure 7.3 A procedure for substituting a subterm of a term by another subterm.

Some implementations of Prolog may require that all the goals, as they
appear in the program, are syntactically either atoms or structures with an atom
as the principal functor. Thus a variable, regardless of its eventual instantia-
tion, in such a case may not be syntactically acceptable as a goal. This problem
is circumvented by another built-in predicate, call, whose argument is the goal
to be executed. Accordingly, the example would be rewritten as:

Goal =.. [Functor | Arglist],
call(Goal)

Sometimes we may want to extract from a term just its principal functor
or one of its arguments. In such a case we can, of course, use the ‘=..’ relation.
But it can be neater and more practical, and also more efficient, to use one of
the other two built-in procedures for manipulating terms: functor and arg.
Their meaning is as follows: a goal

functor(Term, F, N)

MORE BUILT-IN PROCEDURES 167

is true if F is the principal functor of Term and N is the arity of F. A goal
arg(N, Term, A)

is true if A is the. Nth argument in Term, assuming that arguments are num-
bered from left to right starting with 1. The following examples illustrate:

?- functor(t(f(X), X, t), Fun, Arity).

Fun =t
Arity = 3

?- arg(2, f(X, t(a)’ t(b))3 Y)
Y = t(a)

?- functor(D, date, 3),
arg(1, D, 29),
arg(2, D, june),
arg(3, D, 1982).

D = date(29, june, 1982)

The last example shows a special application of the functor predicate. The goal
functor(D, date, 3) generates a ‘general’ term whose principal functor is date
with three arguments. The term is general in that the three arguments are
uninstantiated variables whose names are generated by Prolog. For example:

D = date(_5, _6, _7)

These three variables are then instantiated in the example above by the three
arg goals.

Related to this set of built-in predicates is the predicate name for con-
structing/decomposing atoms, introduced in Chapter 6. We will repeat its
meaning here for completeness.

name(A, L)

is true if L is the list of ASCII codes of the characters in atom A.

Exercises

7.3 Define the predicate ground(Term) so that it is true if Term does not
contain any uninstantiated variables.

7.4 The substitute procedure of this section only produces the ‘outer-most’
substitution when there are alternatives. Modify the procedure so that all
possible alternative substitutions are produced through backtracking.

168 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

For example:

?- substitute(a+b, f(A+B), new, NewTerm).
A=a

B=b

NewTerm = f(new);

A =a+b
B = a+b
NewTerm = f(new+new)

Our original version only finds the first answer.

7.5 Define the relation
subsumes(Term1, Term2)
so that Term1 is more general than Term2. For example:

?- subsumes(X, c).
yes

?- subsumes(g(X), g(t(Y))).
yes

?- subsumes(f(X,X), f(a,b)).
no
7.3 Various kinds of equality

When do we consider two terms to be equal? Until now we have introduced
three kinds of equality in Prolog. The first was based on matching, written as:

X=Y

This is true if X and Y match. Another type of equality was written as
XisE

This is true if X matches the value of the arithmetic expression E. We also had:
El =:=E2

This is true if the values of the arithmetic expressions E1 and E2 are equal. In
contrast, when the values of two arithmetic expressions are not equal, we write

El1 =\=E2

Sometimes we are interested in a stricter kind of equality: the literal
equality of two terms. This kind of equality is implemented as another built-in

MORE BUILT-IN PROCEDURES 169

predicate written as an infix operator ‘==":

This is true if terms T1 and T2 are identical; that is, they have exactly the same
structure and all the corresponding components are the same. In particular, the
names of the variables also have to be the same. The complementary relation is
‘not identical’, written as:

T1 \==T2

Here are some examples:
?- f(a, b) == f(a, b).
yes
?- f(a, b) == f(a, X).
no
?- f(a, X) ==f(a, Y).

no

yes

7- (X, f(a,Y)) == t(X, f(a,Y)).
yes

As an example, let us redefine the relation
count(Term, List, N)

from Section 7.1. This time let N be the number of literal occurrences of the
term Term in a list List:

count(_, [], 0).
count(Term, [Head | L], N) :-

Term == Head, !,
count(Term, L, N1),
Nis N1+ 1;

count(Term, L, N).

7.4 Database manipulation

According to the relational model of databases, a database is a specification of
a set of relations. A Prolog program can be viewed as such a database: the
specification of relations is partly explicit (facts) and partly implicit (rules).

170 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Furthermore, built-in predicates make it possible to update this database
during the execution of the program. This is done by adding (during execution)
new clauses to the program or by deleting existing clauses. Predicates that serve
these purposes are assert, asserta, assertz and retract.

A goal

assert(C)

always succeeds and, as its side effect, causes a clause C to be ‘asserted’ — that
is, added to the database. A goal

retract(C)

does the opposite: it deletes a clause that matches C. The following conversa-
tion with Prolog illustrates:

?- crisis.

no

?- assert(crisis).

yes

?- crisis.

yes

?- retract(crisis).

yes

?- crisis.

no

Clauses thus asserted act exactly as part of the ‘original’ program. The
following example shows the use of assert and retract as one method of

handling changing situations. Let us assume that we have the following pro-
gram about weather:

nice :-
sunshine, not raining.

funny :-
sunshine, raining.

disgusting :-
raining, fog.

raining.

fog.

?- nice.

no

?- disgusting.

yes

?- retract(fog).
yes

?- disgusting.

no

?- assert(sunshine).

yes

?- funny.

yes

?- retract(raining).
yes

?- nice.

yes

MORE BUILT-IN PROCEDURES

171

The following conversation with this program will gradually update the
database:

Clauses of any form can be asserted or retracted. The next example

fast(ann).
slow(tom).
slow(pat).

?- assert(

(faster(X,Y) :-
fast(X), slow(Y))).

yes

?- faster(A, B).

We can add a rule to this program, as follows:

illustrates that retract is also non-deterministic: a whole set of clauses can,
through backtracking, be removed by a single retract goal. Let us assume that
we have the following facts in the ‘consulted’ program:

172 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

A = ann
B = tom

?- retract(slow(X)).

X = tom; |
X = pat;
no |

?- faster(ann, _).

no
Notice that when a rule is asserted, the syntax requires that the rule (as an
argument to assert) be enclosed in parentheses.

When asserting a clause, we may want to specify the position at which the
new clause is inserted to the database. The predicates asserta and assertz enable
us to control the position of insertion. The goal

asserta(C)
adds C at the beginning of the database. The goal

assertz(C)

adds C at the end of the database. The following example illustrates these
effects:

?- assert(p(a)), assertz(p(b)), asserta(p(c)).

yes

?- p(X).
X =g
X =a;
X =

There is a relation between consult and assertz. Consulting a file can be
defined in terms of assertz as follows: to consult a file, read each term (clause)
in the file and assert it at the end of the database.

One useful application of asserta is to store already computed answers to
questions. For example, let there be a predicate

solve(Problem, Solution)

defined in the program. We may now ask some question and request that the
answer be remembered for future questions.

MORE BUILT-IN PROCEDURES 173

?- solve(probleml, Solution),
asserta(solve(problem1, Solution)).

If the first goal above succeeds then the answer (Solution) is stored and used, as
any other clause, in answering further questions. The advantage of such a
‘memoization’ of answers is that a further question that matches the asserted
fact will normally be answered much quicker than the first one. The result now
will be simply retrieved as a fact, and not computed through a possibly time-
consuming process.

An extension of this idea is to use asserting for generating all solutions in
the form of a table of facts. For example, we can generate a table of products of
all pairs of integers between 0 and 9 as follows: generate a pair of integers X and
Y, compute Z is X*Y, assert the three numbers as one line of the product table,
and then force the failure. The failure will cause, through backtracking,
another pair of integers to be found and so another line tabulated, etc. The
following procedure maketable implements this idea:

maketable :-
L =1[0,1,2,3,4,5,6,7,8,9],
member(X, L), % Choose first factor
member(Y, L), % Choose second factor
Z is X*Y,
assert(product(X,Y,Z)),
fail.

The question
?- maketable.
will, of course, not succeed, but it will, as a side effect, add the whole product

table to the database. After that, we can ask for example, what pairs give the
product 8:

?- product(A, B, 8).

i
SN 00

we

-

W > W

A remark on the style of programming should be made at this stage. The
foregoing examples illustrate some obviously useful applications of assert and
retract. However, their use requires special care. Excessive and careless use of
these facilities cannot be recommended as good programming style. By assert-
ing and retracting we, in fact, modify the program. Therefore relations that

174 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

hold at some point will not be true at some other time. At different times the
same questions receive different answers. A lot of asserting and retracting may
thus obscure the meaning of the program and it may become hard to imagine
what is true and what is not. The resulting behaviour of the program may
become difficult to understand, difficult to explain and to trust.

Exercises

7.6 (a) Write a Prolog question to remove the whole product table from the
database.

(b) Modify the question so that it only removes those entries where the
product is 0.
7.7 Define the relation
copy(Term, Copy)

which will produce a copy of Term so that Copy is Term with all its
variables renamed. This can be easily programmed by using assert and
retract.

7.5 Control facilities

So far we have covered most of the extra control facilities except repeat. For
completeness the complete set is presented here.

cut, written as ‘!, prevents backtracking. It was introduced in Chapter 5.
fail is a goal that always fails.
true is a goal that always succeeds.

not(P) is a type of negation that behaves exactly as if defined as:
not(P) :- P, !, fail; true.
Some problems with cut and not were discussed in detail in Chapter 5.

call(P) invokes a goal P. It succeeds if P succeeds.

repeat is a goal that always succeeds. Its special property is that it is non-
deterministic; therefore, each time it is reached by backtracking it gener-
ates another alternative execution branch. repeat behaves as if defined
by:

repeat.

repeat :- repeat.

A typical way of using repeat is illustrated by the following procedure
dosquares which reads a sequence of numbers and outputs their squares.

MORE BUILT-IN PROCEDURES 175

The sequence is concluded with the atom stop which serves as a signal for
the procedure to terminate.

dosquares :-
repeat,
read(X),
(X = stop, !;
Y is X*X, write(Y), fail).

7.6 bagof, setof and findall

We can generate, by backtracking, all the objects, one by one, that satisfy some
goal. Each time a new solution is generated, the previous one disappears and is
not accessible any more. However, sometimes we would prefer to have all the
generated objects available together — for example, collected into a list. The
built-in predicates bagof and setof serve this purpose; the predicate findall is
sometimes provided instead.

The goal

bagof(X, P, L)

will produce the list L of all the objects X such that a goal P is satisfied. Of
course, this usually makes sense only if X and P have some common variables.
For example, let us assume that we have in the program a specification that
classifies (some) letters into vowels and consonants:

class(a, vow).
class(b, con).
class(c, con).
class(d, con).
class(e, vow).
class(f, con).

Then we can obtain the list of all the consonants in this specification by the
goal:

?- bagof(Letter, class(Letter, con), Letters).

Letters = [b,c,d,f]
If, in the above goal, we leave the class of a letter unspecified then we get,
through backtracking, two lists of letters, each of them corresponding to each
class:

?- bagof(Letter, class(Letter, Class), Letters).

176 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Class = vow
Letters = [a,e];

Class = con
Letters = [b,c,d,f]

If there is no solution for P in the goal bagof(X, P, L) then the bagof goal
simply fails. If the same object X is found repeatedly then all its occurrences
will appear in L, which leads to duplicate items in L.

The predicate setof is similar to bagof. The goal

setof(X, P, L)

will again produce a list L of objects X that satisfy P. Only this time the list L
will be ordered and duplicate items, if there are any, will be eliminated. The
ordering of the objects is according to the alphabetical order or to the relation
‘<’, if objects in the list are numbers. If the objects are structures then the
principal functors are compared for the ordering. If these are equal then the
left-most, top-most functors that are not equal in the terms compared decide.

There is no restriction on the kind of objects that are collected. So we can,
for example, construct a list of pairs of the form

Class/Letter
so that the consonants come first (‘con’ is alphabetically before ‘vow’):

?- setof(Class/Letter, class(Letter, Class), List).
List = [con/b, con/c, con/d, con/f, vow/a, vow/e]

Another predicate of this family, similar to bagof, is findall.
findall(X, P, L)

produces, again, a list of objects that satisfy P. The difference with respect to
bagof is that all the objects X are collected regardless of (possibly) different
solutions for variables in P that are not shared with X. This difference is shown
in the following example:

?- findall(Letter, class(Letter, Class), Letters).
Letters = [a,b,c,d,e,f]

If there is no object X that satisfies P then findall will succeed with L = [].

If findall is not available as a built-in predicate in the implementation
used then it can be easily programmed as follows. All solutions for P are
generated by forced backtracking. Each solution is, when generated, immedi-
ately asserted into the database so that it is not lost when the next solution is
found. After all the solutions have been generated and asserted, they have to

MORE BUILT-IN PROCEDURES 177

findall(X, Goal, Xlist) :-

call(Goal), % Find a solution
assertz(stack(X)), % Assert it
fail; % Try to find more solutions
assertz(stack(bottom)), % Mark end of solutions
collect(Xlist). % Collect the solutions
collect(L) :-
retract(stack(X)), !, % Retract next solution
(X == bottom, !, L = []; % End of solutions?
L = [X | Rest], collect(Rest)). % Otherwise collect the rest

Figure 7.4 An implementation of the findall relation.

be collected into a list and retracted from the database. This whole process can
be imagined as all the solutions generated forming a stack. Each newly gener-
ated solution is, by assertion, placed on top of this stack. When the solutions
are collected the stack dissolves. Note, in addition, that the bottom of this stack
has to be marked, for example, by the atom ‘bottom’ (which, of course, should
be different from any solution that is possibly expected). An implementation of
findall along these lines is shown as Figure 7.4.

Exercises
7.8 Use bagof to define the relation powerset(Set, Subsets) to compute the
set of all subsets of a given set (all sets represented as lists).
7.9 Use bagof to define the relation
copy(Term, Copy)

such that Copy is Term with all its variables renamed.

Summary

® A Prolog implementation normally provides a set of built-in procedures
to accomplish several useful operations that are not possible in pure
Prolog. In this chapter, such a set of predicates, available in many Prolog
implementations, was introduced.

® The type of a term can be tested by the following predicates:

var(X) X is a (non-instantiated) variable
nonvar(X) X is not a variable

atom(X) X is an atom

integer(X) X is an integer

atomic(X) X is either an atom or an integer

178

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Terms can be constructed or decomposed:

Term =.. [Functor | ArgumentList]
functor(Term, Functor, Arity)

arg(N, Term, Argument)

name(Atom, CharacterCodes)

A Prolog program can be viewed as a relational database that can be
updated by the following procedures:

assert(Clause) add Clause to the program

asserta(Clause) add at the beginning

assertz(Clause) add at the end

retract(Clause) remove a clause that matches Clause

All the objects that satisfy a given condition can be collected into a list by
the predicates:

bagof(X, P, L) L is the list of all X that satisfy condition P
setof(X, P, L) L is the sorted list of all X that satisfy condition P
findall(X, P, L) similar to bagof

repeat is a control facility that generates an unlimited number of alterna-
tives for backtracking

8 Programming Style and
Technique

In this chapter we will review some general principles of good programming
and discuss the following questions in particular: How to think about Prolog
programs? What are elements of good programming style in Prolog? How to
debug Prolog programs? How to make Prolog programs more efficient?

8.1 General principles of good programming

A fundamental question, related to good programming, is: What is a good
program? Answering this question is not trivial as there are several criteria for
judging how good a program is. Generally accepted criteria include the
following:

® Correctness Above all, a good program should be correct. That is, it
should do what it is supposed to do. This may seem a trivial, self-
explanatory requirement. However, in the case of complex programs,
correctness is often not attained. A common mistake when writing pro-
grams is to neglect this obvious criterion and pay more attention to other
criteria, such as efficiency.

® Efficiency A good program should not needlessly waste computer time
and memory space.

® Transparency, readability A good program should be easy to read and
easy to understand. It should not be more complicated than necessary.
Clever programming tricks that obscure the meaning of the program
should be avoided. The general organization of the program and its
layout help its readability.

® Modifiability A good program should be easy to modify and to extend.
Transparency and modular organization of the program help
modifiability.

® Robustness A good program should be robust. It should not crash
immediately when the user enters some incorrect or unexpected data.
The program should, in the case of such errors, stay ‘alive’ and behave
reasonably (should report errors).

179

180 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

® Documentation A good program should be properly documented. The

minimal documentation is the program’s listing including sufficient pro-
gram comments.

The 1mportance of particular criteria depends on the problem and on the
circumstances in which the program is written, and on the environment in
which it is used. There is no doubt that correctness has the highest priority. The
issues of transparency, modifiability, robustness and documentation are
usually given, at least, as much priority as the issue of efficiency.

There are some general guidelines for practically achieving the above
criteria. One important rule is to first think about the problem to be solved, and
only then to start writing the actual code in the programming language used.
Once we have developed a good understanding of the problem and the whole
solution is well thought through, the actual coding will be fast and easy, and
there is a good chance that we will soon get a correct program.

A common mistake is to start writing the code even before the full
definition of the problem has been understood. A fundamental reason why
early coding is bad practice is that the thinking about the problem and the ideas
for a solution should be done in terms that are most relevant to the problem.
These terms are usually far from the syntax of the programming language used,
and they may include natural language statements and pictorial representation
of ideas.

Such a formulation of the solution will have to be transformed into the
programming language, but this transformation process may not be easy. A
good approach is to use the principle of stepwise refinement. The initial for-
mulation of the solution is referred to as the ‘top-level solution’, and the final
program as the ‘bottom-level solution’.

According to the principle of stepwise refinement, the final program is
developed through a sequence of transformations, or ‘refinements’, of the
solution. We start with the first, top-level solution and then proceed through a
sequence of solutions; these are all equivalent, but each solution in the
sequence is expressed in more detail. In each refinement step, concepts used in
previous formulations are elaborated to greater detail and their representation
gets closer to the programming language. It should be realized that refinement
applies both to procedure definitions and to data structures. In the initial stages
we normally work with more abstract, bulky units of information whose
structure is refined later.

Such a strategy of top-down stepwise refinement has the following
advantages:

® it allows for formulation of rough solutions in terms that are most
relevant to the problem;

® in terms of such powerful concepts, the solution should be succint and
simple, and therefore likely to be correct;

® each refinement step should be small enough so that it is intellectually
manageable; if so, the transformation of a solution into a new, more

PROGRAMMING STYLE AND TECHNIQUE 181

detailed representation is likely to be correct, and so is the resulting
solution at the next level of detail.

In the case of Prolog we may talk about the stepwise refinement of
relations. If the nature of the problem suggests thinking in algorithmic terms,
then we can also talk about refinement of algorithms, adopting the procedural
point of view on Prolog.

In order to properly refine a solution at some level of detail, and to
introduce useful concepts at the next lower level, we need ideas. Therefore
programming is creative, especially so for beginners. With experience,
programming gradually becomes less of an art and more of a craft. But,
nevertheless, a major question is: How do we get ideas? Most ideas come from
experience, from similar problems whose solutions we know. If we do not
know a direct programming solution, another similar problem could be help-
ful. Another source of ideas is everyday life. For example, if the problem is to
write a program to sort a list of items we may get an idea from considering the
question: How would I myself sort a set of exam papers according to the
alphabetical order of students?

General principles of good programming outlined in this section are also
known as the ingredients of ‘structured programming’, and they basically apply
to Prolog as well. We will discuss some details with particular reference to
Prolog in the following sections.

8.2 How to think about Prolog programs

One characteristic feature of Prolog is that it allows for both the procedural and
declarative way of thinking about programs. The two approaches have been
discussed in detail in Chapter 2, and illustrated by examples throughout the
text. Which approach will be more efficient and practical depends on the
problem. Declarative solutions are usually easier to develop, but may lead to
an inefficient program.

During the process of developing a solution we have to find ideas for
reducing problems to one or more easier subproblems. An important question
is: How do we find proper subproblems? There are several general principles
that often work in Prolog programming. These will be discussed in the follow-
ing sections.

8.2.1 Use of recursion

The principle here is to split the problem into cases belonging to two groups:

(1) trivial, or ‘boundary’ cases;

(2) ‘general’ cases where the solution is constructed from solutions of
(simpler) versions of the original problem itself.

182 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

In Prolog we use this technique all the time. Let us look at one more example:
processing a list of items so that each item is transformed by the same transfor-
mation rule. Let this procedure be

maplist(List, F, NewList)

where List is an original list, F is a transformation rule (a binary relation) and
NewList is the list of all transformed items. The problem of transforming List
can be split into two cases:

(1) Boundary case: List =[]
if List = [] then NewList = [], regardless of F
(2) General case: List = [X | Tail]

To transform a list of the form [X | Tail], do:
transform the list Tail obtaining NewTail, and
transform the item X by rule F obtaining NewX;
the whole transformed list is [NewX | NewTail].

In Prolog:

maplist(], -, []).

maplist([X | Tail], F, [NewX | NewTail]) :-
G =.. [F, X, NewX],
call(G),
maplist(Tail, F, NewTail).

One reason why recursion so naturally applies to defining relations in
Prolog is that data objects themselves often have recursive structure. Lists and
trees are such objects. A list is either empty (boundary case) or has a head and a
tail that is itself a list (general case). A binary tree is either empty (boundary
case) or it has a root and two subtrees that are themselves binary trees (general
case). Therefore, to process a whole non-empty tree, we must do something
with the root, and process the subtrees.

8.2.2 Generalization

Itis often a good idea to generalize the original problem, so that the solution to
the generalized problem can be formulated recursively. The original problem is
then solved as a special case of its more general version. Generalization of a
relation typically involves the introduction of one or more extra arguments. A
major problem, which may require deeper insight into the problem, is how to
find the right generalization.

As an example let us revisit the eight queens problem. The original

PROGRAMMING STYLE AND TECHNIQUE 183

problem was to place eight queens on the chessboard so that they do not attack
each other. Let us call the corresponding relation

eightqueens(Pos)

This is true if Pos is some representation of a position with eight non-attacking
queens. A good idea in this case is to generalize the number of queens from
eight to N. The number of queens now becomes the additional argument:

nqueens(Pos, N)

The advantage of this generalization is that there is an immediate recursive
formulation of the nqueens relation:

(1) Boundary case: N =0
To safely place zero queens is trivial.
(2) General case: N> 0
To safely place N queens on the board, satisfy the following:

e achieve a safe configuration of (N — 1) queens; and

e add the remaining queen so that she does not attack any other
queen

Once the generalized problem has been solved, the original problem is easy:

eightqueens(Pos) :- nqueens(Pos, 8).

8.2.3 Using pictures

When searching for ideas about a problem, it is often useful to introduce some
graphical representation of the problem. A picture may help us to perceive
some essential relations in the problem. Then we just have to describe what we
see in the picture in the programming language.

The use of pictorial representations is often useful in problem solving in
general; it seems, however, that it works with Prolog particularly well. The
following arguments explain why:

(1) Prolog is particularly suitable for problems that involve objects and
relations about objects. Often, such problems can be naturally illustrated
by graphs in which nodes correspond to objects and arcs correspond to
relations.

(2) Structured data objects in Prolog are naturally pictured as trees.

(3) The declarative meaning of Prolog facilitates the translation of pictorial
representations into Prolog because, in principle, the order in which the

184 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

picture is described does not matter. We just put what we see into the
program in any order. (For practical reasons of the program’s efficiency
this order will possibly have to be polished later.)

8.3 Programming style
The purpose of conforming to some stylistic conventions is:

® to reduce the danger of programming errors; and

® to produce programs that are readable and easy to understand, easy to
debug and to modify.

We will review here some ingredients of good programming style in Prolog:
some general rules of good style, tabular organization of long procedures and
commenting.

8.3.1 Some rules of good style

® Program clauses should be short. Their body should typically contain no
more than a few goals.

® Procedures should be short because long procedures are hard to under-
stand. However, long procedures are acceptable if they have some
uniform structure (this will be discussed later in this section).

® Mnemonic names for procedures and variables should be used. Names
should indicate the meaning of relations and the role of data objects.

® The layout of programs is important. Spacing, blank lines and indenta-
tion should be consistently used for the sake of readability. Clauses about
the same procedure should be clustered together; there should be blank
lines between clauses (unless, perhaps, there are numerous facts about
the same relation); each goal can be placed on a separate line. Prolog
programs sometimes resemble poems for the aesthetic appeal of ideas
and form.

® Stylistic conventions of this kind may vary from program to program as
they depend on the problem and personal taste. It is important, however,
that the same conventions are used consistently throughout the whole
program.

® The cut operator should be used with care. Cut should not be used if it can
be easily avoided. It is better to use, where possible, ‘green cuts’ rather
than ‘red cuts’. As discussed in Chapter 5, a cut is called ‘green’ if it can be
removed without altering the declarative meaning of the clause. The use
of ‘red cuts’ should be restricted to clearly defined constructs such as not
or the selection between alternatives. An example of the latter construct
is:

if Condition then Goall else Goal2

PROGRAMMING STYLE AND TECHNIOUE 185

This translates into Prolog, using cut, as:

Condition, !, % Condition true?
Goall; % If yes then Goall
Goal2 % Otherwise Goal2

e The not operator can also lead to surprising behaviour, as it is related to
cut. We have to be well aware of how not is defined in Prolog. However, if
there is a dilemma between not and cut, the former is perhaps better than
some obscure construct with cut.

e Program modification by assert and retract can grossly degrade the
transparency of the program’s behaviour. In particular, the same pro-
gram will answer the same question differently at different times. In such
cases, if we want to reproduce the same behaviour we have to make sure
that the whole previous state, which was modified by assertions and
retractions, is completely restored.

e The use of a semicolon may obscure the meaning of a clause. The
readability can sometimes be improved by splitting the clause containing
the semicolon into more clauses; but this will, possibly, be at the expense
of the length of the program and its efficiency.

To illustrate some points of this section consider the relation
merge(List1, List2, List3)

where List1 and List2 are ordered lists that merge into List3. For example:
merge([2,4,7], [1,3,4,8], [1,2,3,4,4,7,8])

The following is an implementation of merge in bad style:

merge(List1, List2, List3) :-
Listl =[], !, List3 = List2; % First list empty
List2 =[], !, List3 = List1; % Second list empty
List1 = [X | Restl],
List2 = [Y | Rest2],
(X<Y,!,
Z =X, % Z is head of List3
merge(Restl, List2, Rest3);
Z=Y,
merge(List1l, Rest2, Rest3)),
List3 = [Z | Rest3].

Here is a better version which avoids semicolons:

merge([], List, List).
merge(List, [], List).

186 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

merge([X | Restl], [Y | Rest2], [X | Rest3]) -
X<Y,!
merge(Restl, [Y | Rest2], Rest3).

merge(Listl, [Y | Rest2], [Y | Rest3]) :-
merge(List1, Rest2, Rest3).

8.3.2 Tabular organization of long procedures

Long procedures are acceptable if they have some uniform structure.
Typically, such a form is a set of facts when a relation is effectively defined in
the tabular form. Advantages of such an organization of a long procedure are:

® Its structure is easily understood.
® Incrementability: it can be refined by simply adding new facts.

® Itis easy to check and correct or modify (by simply replacing some fact
independently of other facts).

8.3.3 Commenting

Program comments should explain in the first place what the program is about
and how to use it, and only then the details of the solution method used and
other programming details. The main purpose of comments is to enable the
user to use the program, to understand it and to possibly modify it. Comments
should describe, in the shortest form possible, everything that is essential to
these ends. Undercommenting is a usual fault, but a program can also be
overcommented. Explanation of details that are obvious from the program
code itself is only a needless burden to the program.

Long passages of comments should precede the code they refer to, while
short comments should be interspersed with the code itself. Information that
should, in general, be included in comments comprises the following:

® What the program does, how it is used (for example, what goal is to be
invoked and what are the expected results), examples of using the
program.

What are top-level predicates?

How are main concepts (objects) represented?

Execution time and memory requirements of the program.
What are the program’s limitations?

Are there any special system-dependent features used?

‘What is the meaning of the predicates in the program? What are their
arguments? Which arguments are ‘input’ and which are ‘output’, if
known? (Input arguments have fully specified values, without uninstanti-
ated variables, when the predicate is called.)

® Algorithmic and implementation details.

PROGRAMMING STYLE AND TECHNIQUE 187

8.4 Debugging

When a program does not do what it is expected to do the main problem is to
locate the error(s). It is easier to locate an error in a part of the program (ora
module) than in the program as a whole. Therefore, a good principle of
debugging is to start by testing smaller units of the program, and when these
can be trusted, to start testing bigger modules or the whole program.

Debugging in Prolog is facilitated by two things: first, Prolog is an
interactive language so any part of the program can be directly invoked by a
proper question to the Prolog system; second, Prolog implementations usually
provide special debugging aids. As a result of these two features, debugging of
Prolog programs can, in general, be done far more efficiently than in most
other programming languages.

The basis for debugging aids is tracing. ‘Tracing a goal’ means that the
information regarding the goal’s satisfaction is displayed during execution.
This information includes:

e Entryinformation: the predicate name and the values of arguments when
the goal is invoked.

e Exit information: in the case of success, the values of arguments that
satisfy the goal; otherwise an indication of failure.

e Re-entry information: invocation of the same goal caused by
backtracking.

Between entry and exit, the trace information for all the subgoals of this goal
can be obtained. So we can trace the execution of our question all the way down
to the lowest level goals until facts are encountered. Such detailed tracing may
turn out to be impractical due to the excessive amount of tracing information;
therefore, the user can specify selective tracing. There are two selection
mechanisms: first, suppress tracing information beyond a certain level; second,
trace only some specified subset of predicates, and not all of them.

Such debugging aids are activated by system-dependent built-in predi-
cates. A typical subset of such predicates is as follows:

trace

triggers exhaustive tracing of goals that follow.
notrace

stops further tracing.
spy(P)

specifies that a predicate P be traced. This is used when we are particularly
interested in the named predicate and want to avoid tracing information from

188 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

other goals (either above or below the level of a call of P). Several predicates
can be simultaneously active for ‘spying’.

nospy(P)

stops ‘spying’ P.

Tracing beyond a certain depth can be suppressed by special commands
during execution. There may be several other debugging commands available,
such as returning to a previous point of execution. After such a return we can,
for example, repeat the execution at a greater detail of tracing.

8.5 Efficiency

There are several aspects of efficiency, including the most common ones,
execution time and space requirements of a program. Another aspect is the
time needed by the programmer to develop the program.

The traditional computer architecture is not particularly suitable for the
Prolog style of program execution — that is, satisfying a list of goals. Therefore,
the limitations of time and space may be experienced earlier in Prolog than in
many other programming languages. Whether this will cause difficulties in a
practical application depends on the problem. The issue of time efficiency is
practically meaningless if a Prolog program that is run a few times per day takes
1 second of CPU time and a corresponding program in some other language,
say Fortran, takes 0.1 seconds. The difference in efficiency will perhaps matter
if the two programs take 50 minutes and 5 minutes respectively.

On the other hand, in many areas of application Prolog will greatly
reduce the program development time. Prolog programs will, in general, be
easier to write, to understand and to debug than in traditional languages.
Problems that gravitate toward the ‘Prolog domain’ involve symbolic, non-
numeric processing, structured data objects and relations between them. In
particular, Prolog has been successfully applied in areas, such as symbolic
solving of equations, planning, databases, general problem solving, prototyp-
ing, implementation of programming languages, discrete and qualitative
simulation, architectural design, machine learning, natural language under-
standing, expert systems, and other areas of artificial intelligence. On the other
hand, numerical mathematics is an area for which Prolog is not a natural
candidate.

With respect to the execution efficiency, executing a compiled program is
generally more efficient than interpreting the program. Therefore, if the Prolog
system contains both an interpreter and a compiler, then the compiler should
be used if efficiency is critical.

If a program suffers from inefficiency then it can often be radically
improved by improving the algorithm itself. However, to do this, the pro-
cedural aspects of the program have to be studied. A simple way of improving
the executional efficiency is to find a better ordering of clauses of procedures,

PROGRAMMING STYLE AND TECHNIQUE 189

and of goals in the bodies of procedures. Another relatively simple method is to
provide guidance to the Prolog system by means of cuts.

Ideas for improving the efficiency of a program usually come from a
deeper understanding of the problem. A more efficient algorithm can, in
general, result from improvement: of two kinds:

e Improving search efficiency by avoiding unnecessary backtracking and
stopping the execution of useless alternatives as soon as possible.

e Using more suitable data structures to represent objects in the program,
so that operations on objects can be implemented more efficiently.

We will study both kinds of improvements by looking at examples. Yet another
technique of improving efficiency will be illustrated by an example. This
technique is based on asserting into the database intermediate results that are
likely to be needed again in the future computation. Instead of repeating the
computation, such results are simply retrieved as already known facts.

8.5.1 Improving the efficiency of an eight queens program

As a simple example of improving the search efficiency let us revisit the eight
queens problem (see Figure 4.7). In this program, the Y-coordinates of the
queens are found by successively trying, for each queen, the integers between 1
and 8. This was programmed as the goal:

member(Y, [1,2,3,4,5,6,7,8])

The way that member works is that Y = 1is tried first, and then Y =2,Y =3,
etc. As the queens are placed one after another in adjacent columns on the
board, it is obvious that this order of trials is not the most appropriate. The
reason for this is that the queens in adjacent columns will attack each other if
they are not placed at least two squares apart in the vertical direction. Accord-
ing to this observation, a simple attempt to improve the efficiency is to
rearrange the candidate coordinate values. For example:

member(Y, [1,5,2,6,3,7,4,8])

This minor change will reduce the time needed to find the first solution by a
factor of 3 or 4.

In the next example, a similarly simple idea of reordering will convert a
practically unacceptable time complexity into a trivial one.

8.5.2 Improving the efficiency in a map colouring program

The map colouring problem is to assign each country in a given map one of four
given colours in such a way that no two neighbouring countries are painted with
the same colour. There is a theorem which guarantees that this is always
possible.

190 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Let us assume that a map is specified by the neighbour relation
ngb(Country, Neighbours)

where Neighbours is the list of countries bordering on Country. So the map of
Europe, with 20 countries, would be specified (in alphabetical order) as:

ngb(albania, [greece, yugoslavia]).

ngb(andorra, [france, spain]).

ngb(austria, [czechoslovakia, hungary, italy, liechtenstein,
switzerland, westgermany, yugoslavia]).

Let a solution be represented as a list of pairs of the form

Country/Colour

which specifies a colour for each country in a given map. For the given map, the
names of countries are fixed in advance, and the problem is to find the values
for the colours. Thus, for Europe, the problem is to find a proper instantiation
of variables C1, C2, C3 , etc. in the list:

[albania/C1, andorra/C2, austria/C3, ...
Now let us define the predicate
colours(Country_colour_list)

which is true if the Country_colour_list satisfies the map colouring constraint
with respect to a given ngb relation. Let the four colours be yellow, blue, red
and green. The condition that no two neighbouring countries are of the same
colour can be formulated in Prolog as follows:

colours([]).

colours([Country/Colour | Rest]) :-
colours(Rest),
member(Colour, [yellow, blue, red, green]),
not(member(Country1l/Colour, Rest), neighbour(Country, Countryl)).

neighbour(Country, Countryl) :-
ngb(Country, Neighbours),
member(Country1, Neighbours).

Here, member(X,L) is, as usual, the list membership relation. This will work
well for simple maps, with a small number of countries. Europe might be
problematic, however. Assuming that the built-in predicate setof is available,

PROGRAMMING STYLE AND TECHNIQUE 191

one attempt to colour Europe could be as follows. First, let us define an
auxiliary relation

country(C) :- ngb(C,).
Then the question for colouring Europe can be formulated as:

?- setof(Cntry/Colour, country(Cntry), CountryColourList),
colours(CountryColourList).

The setof goal will construct a template country/colour list for Europe in which
uninstantiated variables stand for colours. Then the colours goal is supposed to
instantiate the colours. However, this attempt will probably fail because of
inefficiency.

A detailed study of the way Prolog tries to satisfy the colours goal reveals
the source of inefficiency. Countries in the country/colour list are arranged in
alphabetical order, and this has nothing to do with their geographical arrange-
ment. The order in which the countries are assigned colours corresponds to the
order in the list (starting at the end), which is in our case independent of the ngb
relation. So the colouring process starts at some end of the map, continues at
some other end, etc., moving around more or less randomly. This may easily
lead to a situation in which a country that is to be coloured is surrounded by
many other countries, already painted with all four available colours. Then
backtracking is necessary which leads to inefficiency.

It is clear, then, that the efficiency depends on the order in which the
countries are coloured. Intuition suggests a simple colouring strategy that
should be better than random: start with some country that has many
neighbours, and then proceed to the neighbours, then to the neighbours of
neighbours, etc. For Europe, then, West Germany (having most neighbours,
9) is a good candidate to start with. Of course, when the template country/
colour list is constructed, West Germany has to be put at the end of the list and
other countries have to be added at the front of the list. In this way the
colouring algorithm, which starts at the rear end, will commence with West
Germany and proceed from there from neighbour to neighbour.

Such a country/colour template dramatically improves the efficiency with
respect to the original, alphabetical order, and possible colourings for the map
of Europe will be now produced without difficulty.

We can construct a properly ordered list of countries manually, but we do
not have to. The following procedure, makelist, does it. It starts the construc-
tion with some specified country (West Germany in our case) and collects the
countries into a list called Closed. Each country is first put into another list,
called Open, before it is transferred to Closed. Each time that a country is
transferred from Open to Closed, its neighbours are added to Open.

makelist(List) :-
collect([westgermany], [], List).

collect([], Closed, Closed). % No more candidates for Closed

192 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

collect([X | Open], Closed, List) :-

member(X, Closed), !, % X has already been collected?
collect(Open, Closed, List). % Discard X
collect([X | Open], Closed, List) :-
ngb(X, Ngbs), % Find X’s neighbours
conc(Ngbs, Open, Open1), % Put them to Openl
collect(Openl, [X | Closed], List). % Collect the Rest

The conc relation is, as usual, the list concatenation relation.

8.5.3 Improving the efficiency of a list concatenation by a better data
structure

In our programs so far, the concatenation of lists has been programmed as:

conc([], L, L).

conc([X | L1], L2, [X | L3]) :-
conc(L1, L2, L3).

This is inefficient when the first list is long. The following example explains
why:

?- conc([a,b,c], [d,e], L).
This produces the following sequence of goals:

conc([a,b,c], [d,e], L)

conc([b,c], [d,e], L") where L = [a | L']
conc([c], [d,e], L") where L' = [b | L"']
conc([], [d,e], L") where L' = [¢ | L")
true where L' = [d,e]

From this it is clear that the program in effect scans all of the first list, until the
empty list is encountered.

But could we not simply skip the whole of the first list in a single step and
append the second list, instead of gradually working down the first list? To do
this, we need to know where the end of a list is; that is, we need another
representation of lists. One solution is to represent a list by a pair of lists. For
example, the list

[a,b,c]

can be represented by the two lists:

L1 = [a,b,c,d,e]
L2 = [d,e]

PROGRAMMING STYLE AND TECHNIQUE 193

Such a pair of lists, which we will for brevity choose to write as L1-L2,
represents the ‘difference’ between L1 and L2. This of course only works under
the condition that L2 is a suffix of L1. Note that the same list can be represented
by several ‘difference pairs’. So the list [a,b,c] can be represented by

[a,b,c]-[]
or

[a,b,c,d,e]-[d,e]
or

[a,b,c,d,e | T]-[d,e | T]
or

[aab9c I T]-T

where T is any list, etc. The empty list is represented by any pair L-L.

As the second member of the pair indicates the end of the list, the end is
directly accessible. This can be used for an efficient implementation of con-
catenation. The method is illustrated in Figure 8.1. The corresponding con-
catenation relation translates into Prolog as the fact:

concat(A1-Z1, Z1-Z2, A1-Z2).

Al 71 A2
\ ¥
T —
A\
TV
L3

Figure8.1 Concatenation of lists represented by difference pairs. L1 is represented by
Al-Z1, L2 by A2-Z2, and the result L3 by A1-Z2 when Z1 = A2 must be true.

Let us use concat to concatenate the lists [a,b,c], represented by the pair
[a,b,c | T1]-T1, and the list [d,e], represented by [d,e | T2]-T2:

?- concat([a,b,c | T1]-T1, [d,e | T2]-T2, L).

The concatenation is done just by matching this goal with the clause about
concat, giving:

Tl =[de|T2]
L =[ab,c,de | T2}-T2

8.5.4 Improving the efficiency by asserting derived facts

Sometimes during computation the same goal has to be satisfied again and

194 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

again. As Prolog has no special mechanism to discover such situations whole
computation sequences are repeated.

As an example consider a program to compute the Nth Fibonacci number
for a given N. The Fibonacci sequence is

1,1,2,3,5,8,13, ...

Each number in the sequence, except for the first two, is the sum of the
previous two numbers. We will define a predicate

fib(N, F)

to compute, for a given N, the Nth Fibonacci number, F. We count the
numbers in the sequence starting with N = 1. The following fib program deals
first with the first two Fibonacci numbers as two special cases, and then
specifies the general rule about the Fibonacci sequence:

fib(1, 1). % 1st Fibonacci number

fib(2, 1). % 2nd Fibonacci number

fib(N, F) :- % Nth Fib. number, N > 2
N> 2,

N1 is N-1, fib(N1, F1),

N2 is N-2, fib(N2, F2),

Fis F1 + F2. % Nth number is the sum of
% its two predecessors

This program tends to redo parts of the computation. This is easily seen if we
trace the execution of the following goal:

?- fib(6, F).

Figure 8.2 illustrates the essence of this computational process. For example,
the third Fibonacci number, f(3), is needed in three places and the same
computation is repeated each time.

This can be easily avoided by remembering each newly computed
Fibonacci number. The idea is to use the built-in procedure assert and to add
these (intermediate) results as facts to the database. These facts have to
precede other clauses about fib to prevent the use of the general rule in cases
where the result is already known. The modified procedure, fib2, differs from
fib only in this assertion:

fib2(1, 1). % 1st Fibonacci number
fib2(2, 1). % 2nd Fibonacci number
fib2(N, F) :- % Nth Fib. number, N > 2

N>2,

PROGRAMMING STYLE AND TECHNIQUE 195

f(6)
|
:
e
f(5) f(4)
| |
+ +
f4) f(3) f3) f2)
| | | |
+ + 1
RN RN VAN
f(3) f(2) f2) fil) f2) 1)
| | | I |
+ 1 1 1 1 1
RN
f2) f(1)
| |
1 1

Figure 8.2 Computation of the 6th Fibonacci number by procedure fib.

N1 is N-1, fib2(N1, F1),

N2 is N-2, fib2(N2, F2),

Fis F1 + F2,

asserta(fib2(N, F)). % Remember Nth number

This program will try to answer any fib2 goal by first looking at stored facts
about this relation, and only then resort to the general rule. As aresult, when a
goal fib2(N, F) is executed all Fibonacci numbers, up to the Nth number, will
get tabulated. Figure 8.3 illustrates the computation of the 6th Fibonacci
number by fib2. A comparison with Figure 8.2 shows the saving in the com-
putational complexity. For greater N, the savings would be much more
substantial.

Asserting intermediate results is a standard technique for avoiding repe-
ated computations. It should be noted, however, that in the case of Fibonacci
numbers we can also avoid repeated computation by using another algorithm,
rather than by asserting intermediate results. This other algorithm will lead to a
program that is more difficult to understand, but more efficient to execute. The
idea this time is not to define the Nth Fibonacci number simply as the sum of its
two predecessors and leave the recursive calls to unfold the whole computation

196 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

f(6)
|
+

_— \
f(5) f4)
'!' .!, retrieved
/ \
fi4) f3)

|
+ ZI, retrieved
N

f3) f2)

| |

+ 1

7N\

f2) fa)

1 1

Figure 8.3 Computation of the 6th Fibonacci number by procedure fib2, which
remembers previous results. This saves some computation in comparison with fib, see
Figure 8.2.

‘downwards’ to the two initial Fibonacci numbers. Instead, we can work
‘upwards’, starting with the initial two numbers, and compute the numbers in
the sequence one by one in the forward direction. We have to stop when we
have computed the Nth number. Most of the work in such a program is done by
the procedure:

forwardfib(M, N, F1, F2, F)

Here, F1 and F2 are the (M - 1)st and Mth Fibonacci numbers, and F is the Nth
Fibonacci number. Figure 8.4 helps to understand the forwardfib relation.
According to this figure, forwardfib finds a sequence of transformations to
reach a final configuration (when M = N) from a given starting configuration.
When forwardfib is invoked, all the arguments except Fhave to be instantiated,
and M has to be less or equal to N. The program is:

fib3(N, F) :-
forwardfib(2, N, 1, 1, F). % The first two Fib. numbers are 1

forwardfib(M, N, F1, F2, F2) :-
M >= N. % Nth Fibonacci number reached

PROGRAMMING STYLE AND TECHNIQUE 197

3 N

O—OH0 O—®

| —_—
Starting Transition from Final
configuration, configuration M configuration,
here M =2 toM+1 hereM =N

Figure 8.4 Relations in the Fibonacci sequence. A ‘configuration’, depicted by a large
circle, is defined by three things: an index M and two consecutive Fibonacci numbers
f(iM — 1) and f(M).

forwardfib(M, N, F1, F2, F) :-
M <N, % Nth number not yet reached
NextMisM + 1,
NextF2 is F1 + F2,
forwardfib(NextM, N, F2, NextF2, F).

Exercises

8.1 Procedures subl, sub2 and sub3, shown below, all implement the sublist
relation. subl is a more procedural definition whereas sub2 and sub3 are
written in a more declarative style. Study the behaviour, with reference
to efficiency, of these three procedures on some sample lists. Two of
them behave nearly equivalently and have similar efficiency. Which two?
Why is the remaining one less efficient?

sub1(List, Sublist) :-
prefix(List, Sublist).
subl([_ | Tail], Sublist) :-
sub1(Tail, Sublist). % Sublist is sublist of Tail
prefix(-, [1).
prefix([X | List1], [X | List2]) :-
prefix(List1, List2).
sub2(List, Sublist) :-
conc(List1, List2, List),
conc(List3, Sublist, Listl).
sub3(List, Sublist) :-
conc(List1, List2, List),
conc(Sublist, _, List2).

198

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

8.2 Define the relation
add_at_end(List, Item, NewList)
to add Item at the end of List producing NewList. Let both lists be
represented by difference pairs.
8.2 Define the relation
reverse(List, ReversedList)
where both lists are represented by difference pairs.

8.4 Rewrite the collect procedure of Section 8.5.2 using difference pair
representation for lists so that the concatenation can be done more
efficiently.

Summary

® There are several criteria for evaluating programs:
correctness
efficiency
transparency, readability
modifiability
robustness
documentation

® The principle of stepwise refinement is a good way of organizing the
program development process. Stepwise refinement applies to relations,
algorithms and data structures.

® In Prolog, the following techniques often help to find ideas for
refinements:
Using recursion: identify boundary and general cases of a recursive
definition.
Generalization: consider a more general problem that may be easier to
solve than the original one.
Using pictures: graphical representation may help to identify impor-
tant relations.
® Itis useful to conform to some stylistic conventions to reduce the danger
of programming errors, make programs easier to read, debug and
modify.
® Prolog systems usually provide program debugging aids. Trace facilities

are most useful.

PROGRAMMING STYLE AND TECHNIQUE 199

There are many ways of improving the efficiency of a program. Simple
techniques include:

reordering of goals and clauses

controlling backtracking by inserting cuts

remembering (by assert) solutions that would otherwise be computed
again

More sophisticated and radical techniques aim at better algorithms
(improving search efficiency in particular) and better data structures.

PART TWO

PROLOG IN ARTIFICIAL
INTELLIGENCE

Operations on
Data Structures

One fundamental question in programming is how to represent complex data
objects, such as sets, and efficiently implement operations on such objects. In
general, we talk about selecting a proper data structure. The theme of this
chapter is some frequently used data structures that belong to three big
families: lists, trees and graphs. We will examine ways of representing these
structures in Prolog, and develop programs for some operations on these
structures, such as sorting a list, representing data sets by tree structures,
storing data in trees and retrieving data from trees, path finding in graphs, etc.
We will study several examples because these operations are extremely instruc-
tive for programming in Prolog.

9.1 Representing and sorting lists

9.1.1 Remarks on alternative representations of lists

The special Prolog notation for lists was introduced in Chapter 3 and is used
throughout the text. This notation is, of course, only one way for representing
lists. A list is, in general, defined as a structure that is either

® empty, or
® it consists of a head and a tail; the tail itself has to be a list too.

Therefore, to represent a list in general, we only need two things: a special
symbol to represent the empty list, and a functor to combine a head and a tail.
Thus one way to represent lists could be to choose

donothing
as the symbol that denotes the empty list, and the atom

then

as an infix operator to construct a list from a given head and tail. We can

203

204 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

declare this operator, for example, as:

- op(500, xfy, then).

The list

[enter, sit, eat]

can then be written in this notation as:

enter then sit then eat then donothing

It is important to notice that the special Prolog notation for lists and the
alternative representations amount essentially to the same representation if
properly abstracted. Typical operations on lists, such as

member(X, L)
conc(L1, L2, L3)
del(X, L1, L2)

that have been programmed for the special list notation, can be straightfor-
wardly rewritten into other, user-chosen representations. For example, the
conc relation translates into the ‘then—donothing’ notation as follows. The
definition that we have been using is:

conc([], L, L).

conc([X | L1], L2, [X | L3]) :-
conc(L1, L2, L3).

In our ‘then—donothing’ notation this becomes:

conc(donothing, L, L).

conc(X then L1, L2, X then L3) :-
conc(L1, L2, L3).

This example illustrates how our definitions of relations regarding lists
are easily generalized to the whole class of structures of this type. What
notation for lists will be actually used in the program should be decided
according to the meaning of the lists. If, for example, alist simply means aset of
items, then the Prolog list notation is most convenient as it immediately
indicates what the programmer had in mind. On the other hand, certain kinds
of expressions can also be viewed as lists. For example, to represent a conjunc-

OPERATIONS ON DATA STRUCTURES 205

tion expression in propositional logic, a suitable list-like representation would
be:

e true corresponds to the empty list

® & is the operator to combine the head and the tail, defined for example
as:

- op(300, xfy, &)
Then the conjunction of a, b and ¢ would be represented by:
a&b & c & true

All these examples of different notations for lists are essentially based on
the same structure for lists. On the other hand, in Chapter 8 we discussed
another, essentially different representation of lists, which affects computation
on lists. The trick there was to represent the list by a pair of lists. The list
represented by such a pair of lists is the difference between the two lists. It was
shown that the difference-pair representation facilitates very efficient imple-
mentation of list concatenation.

The discussion in this section also further illuminates the difference
between operators in mathematics and the operator notation in Prolog. In
mathematics, actions are associated with operators whereas in Prolog the
operator notation is simply used for representing structures.

Exercises
9.1 Define the predicate
list(Object)

to recognize whether Object is a standard Prolog list.

9.2 Detfine the list membership relation for lists represented in the ‘then-
donothing’ notation of this section.

9.3 Define the relation
convert(StandardList, List)

for converting between lists, written in the standard list notation and the
‘then—donothing’ notation. For example:

convert([a,b], a then b then donothing)

9.4 Generalize the above convert relation to general representation of lists.
The specific representation desired is then specified by a symbol to

206 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

denote the empty list, and a functor to combine the head and the tail. To
this end convert needs two additional arguments:

convert(StandardList, NewList, Functor, EmptyList)
Examples of using this relation are:

?- convert([a,b], L, then, donothing)

L = a then b then donothing

?- convert([a,b,c], L, +, 0).
L = a+(b+(c+0))

9.1.2 Sorting lists

Sorting is a frequent operation. A list can be sorted if there is an ordering
relation between the items in the list. We will for the purpose of this discussion
assume that there is an ordering relation

gt(X, Y)

meaning that X is greater than Y, whatever ‘greater than’ means. If our items
are numbers then the gt relation will perhaps be defined as:

g(X,Y) - X> .

If the items are atoms then the gt relation can correspond to the alphabetical
order.
Let

sort(List, Sorted)

denote a relation where List is a list of items and Sorted is a list of the same items
sorted in the ascending order according to the gt relation. We will develop
three definitions of this relation in Prolog, based on different ideas for sorting a
list. The first idea is as follows:

To sort a list, List:

® Find two adjacent elements, X and Y, in List such that
gt(X, Y) and swap X and Y in List, obtaining List1; then sort
List1. .

® If there is no pair of adjacent elements, X and Y, in List such
that gt(X, Y), then List is already sorted. '

The purpose of swapping two elements, X and Y, that occur out of order, is

OPERATIONS ON DATA STRUCTURES 207

that after the swapping the new list is closer to a sorted list. After a sufficient
amount of swapping we should end up with all the elements in order. This
principle of sorting is known as bubble sort. The corresponding Prolog pro-
cedure will be therefore called babblesort:

bubblesort(List, Sorted) :-

swap(List, List1), !, % A useful swap in List?

sort(List1, Sorted).
bubblesort(Sorted, Sorted). % Otherwise list is already sorted
swap([X, Y | Rest], [Y, X | Rest]) :- % Swap first two elements

gt(X, Y).
swap([Z | Rest], [Z | Restl]) :- % Swap elements in tail

swap(Rest, Restl).

Another simple sorting algorithm is insertion sort, which is based on the
following idea.

split

all>5

@sort

add.X J]

concatenate

Figure 9.1 Sorting a list by quicksort.

208 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

To sort a non-empty list, L = [X| Tk

(1) Sort the tail Tof L.

(2) Insert the head, X, of L into the sorted tail at such a position
that the resulting list is sorted. The result is the whole sorted
list.

This translates into Prolog as the following insertsort procedure:

insertsort([], []).

insertsort([X | Tail], Sorted) :-
insertsort(Tail, SortedTail), % Sort the tail
insert(X, SortedTail, Sorted). % Insert X at proper place

insert(X, [Y | Sorted], [Y | Sorted1]) :- -
gt(X, Y), !,
insert(X, Sorted, Sorted1).

insert(X, Sorted, [X | Sorted]).

The sorting procedures bubblesort and insertsort are simple, but ineffi-
cient. Of the two procedures, insertion sort is the more efficient one. However,
the average time that insertsort requires for sorting a list of length n grows
proportionally to n?. For long lists, therefore, a much better sorting algorithm

is quicksort. This is based on the following idea, which is illustrated in Figure
9.1:

To sort a non-empty list, L:

(1) Delete some element X from L and split the rest of L into two
lists, called Small and Big, as follows: all elements in L that are
greater than X belong to Big, and all others to Small.

(2) Sort Small obtaining SortedSmall.
(3) Sort Big obtaining SortedBig.

(4) The whole sorted list is the concatenation of SortedSmall and
[X | SortedBig]. E

If the list to be sorted is empty then the result of sorting is also the empty list. A
Prolog implementation of quicksort is shown in Figure 9.2. A particular detail
of this implementation is that the element, X, that is deleted from L is always
simply the head of L. The splitting is programmed as a four-argument relation:

split(X, L, Small, Big)

The time complexity of this algorithm depends on how lucky we are when

OPERATIONS ON DATA STRUCTURES 209

quicksort([], [1).
quicksort([X | Tail], Sorted) :-
split(X, Tail, Small, Big),
quicksort(Small, SortedSmall),
quicksort(Big, SortedBig),
conc(SortedSmall, [X | SortedBig], Sorted).

split(X, [1, [1, [1).

split(X, [Y | Tail], [Y | Small], Big) :-
gt(X, Y), L,
split(X, Tail, Small, Big).

split(X, [Y | Tail], Small, [Y | Big]) :-
split(X, Tail, Small, Big).

conc([], L, L).

conc([X | L1], L2, [X | L3]) :-
conc(L1, L2, L3).

Figure 9.2 Quicksort.

splitting the list to be sorted. If the list is split into two lists of approximately
equal lengths then the time complexity of this sorting procedure is of the order
nlog n where n is the length of the list to be sorted. If, on the contrary, splitting
always results in one list far bigger than the other, then the complexity is in the
order of n2. Analysis would show that the average performance of quicksort is,
fortunately, closer to the best case than to the worst case.

The program in Figure 9.2 can be further improved by a better implemen-
tation of the concatenation operation. Using the difference-pair representation
of lists, introduced in Chapter 8, concatenation is reduced to triviality. To use
this idea in our sorting procedure, the lists in the program of Figure 9.2 can be
represented by pairs of lists of the form A-Z as follows:

S1 isrepresented by Al-Z1
S2 s represented by A2-72

Then the concatenation of the lists S1 and [X | S2] corresponds to the con-
catenation of pairs

Al-Z1 and [X | A2]-Z2
The resulting concatenated list is represented by

Al-Z2 where Z1=[X| A2]

210 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

quicksort(List, Sorted) :-
quicksort2(List, Sorted-[]).

quicksort2([], Z-Z).

quicksort2([X | Tail], A1-Z2) :-
split(X, Tail, Small, Big),
quicksort2(Small, A1-[X | A2]),
quicksort2(Big, A2-Z2).

Figure 9.3 A more efficient implementation of quicksort using difference-pair repre-
sentation for lists. Relation split(X, List, Small, Big) is as defined in Figure 9.2.

The empty list is represented by any pair Z-Z. Introducing these changes
systematically into the program of Figure 9.2 we get a more efficient implemen-
tation of quicksort, programmed as quicksort2 in Figure 9.3. The procedure
quicksort still uses the usual representation of lists, but the actual sorting is
done by the more efficient quicksort2, which uses the difference-pair represen-
tation. The relation between the two procedures is:

quicksort(L, S) :-
quicksort2(L, S-[]).

Exercises

9.5 Write a procedure to merge two sorted lists producing a third list. For
example:

?- merge([2,5,6,6,8], [1,3,5,9], L).
L =[1,2,3,5,5,6,6,8,9]

9.6 The difference between the sorting programs of Figures 9.2 and 9.3 is in
the representation of lists. The former uses plain lists whereas the latter
uses difference-pair representation. Transformation between these two
representations is straightforward and could be mechanized. Carry out
the corresponding changes systematically in the program of Figure 9.2 to
transform it into the program of Figure 9.3.

9.7 Our quicksort program performs badly when the list to be sorted is
already sorted or almost sorted. Analyze why.

9.8 Another good idea for sorting a list that avoids the weakness of quicksort
is based on dividing the list, then sorting smaller lists, and then merging

OPERATIONS ON DATA STRUCTURES 21

these sorted smaller lists. Accordingly, to sort a list L:

e divide L into two lists, L1 and L2, of approximately equal length;
® sort L1 and L2 giving S1 and S2;
® merge S1 and S2 giving L sorted.

Implement this sorting principle and compare its efficiency with the
quicksort program.

9.2 Representing sets by binary trees

One usual application of lists is to represent sets of objects. A disadvantage of
using the list for representing a set is that the set membership testing is
relatively inefficient. The predicate member(X, L) to test whether X is a
member of a list L is usually programmed as:

member(X, [X | L]).

member(X, [Y | L]) :-
member(X, L).

To find X in a list L, this procedure scans the list element by element until X is
found or the end of the list is encountered. This is very inefficient in the case of
long lists.

For representing sets, there are various tree structures that facilitate
more efficient implementation of the set membership relation. We will here
consider binary trees.

A binary tree is either empty or it consists of three things:

a root
a left subtree
a right subtree

The root can be anything, but the subtrees have to be binary trees again. Figure
9.4 shows an example. This tree represents the set {a, b, ¢, d}. The elements of
the set are stored as nodes of the tree. In Figure 9.4, the empty subtrees are not
pictured; for example, the node b has two subtrees that are both empty.

There are many ways to represent a binary tree by a Prolog term. One
simple possibility is to make the root of a binary tree the principal functor of the
term, and the subtrees its arguments. Accordingly, the example tree of Figure
9.4 would be represented by:

a(b, c(d))

Among other disadvantages, this representation requires another functor for

212 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

root

left subtree right subtree

Figure 9.4 A binary tree.

each node of the tree. This can lead to troubles if nodes themselves are
structured objects.

A better and more usual way to represent binary trees is as follows: we
need a special symbol to represent the empty tree, and we need a functor to
construct a non-empty tree from its three components (the root and the two
subtrees). We will make the following choice regarding the functor and the
special symbol:

® Let the atom nil represent the empty tree.

® Let the functor be t so the tree that has a root X, a left subtree L and a
right subtree R is represented by the term t(L, X, R) (see Figure 9.5).

In this representation, the example tree of Figure 9.4 is represented by the
term:

t(t(nil, b, nil), a, t(t(nil, d, nil), c, nil))
Let us now consider the set membership relation, here named in. A goal
in(X, T)

is true if X is a node in a tree T. The in relation can be defined by the following
rules:

Xisinatree Tif:

. ihé-réet_pf’l’isx, or‘ -
~ ¢ Xisinthe left subtree of T, or
e X is in the right subtree of T.

These rules directly translate into Prolog:

in(X, t(-, X,).

OPERATIONS ON DATA STRUCTURES 213

(X) ULXR)

NN

Figure 9.5 A representation of binary trees.

in(X3 t(L9 - —)) -
in(X, L).

in(Xs t(- - R)) -
in(X, R).

Obviously, the goal
in(X, nil)
will fail for any X.
Let us investigate the behaviour of this procedure. In the following

examples, T is the tree of Figure 9.4. The goal
in(X, T)

will, through backtracking, find all the data in the set in the following order:
X = a; X = b; X =c; X=d

Now let us consider efficiency. The goal
in(a, T)

succeeds immediately by the first clause of the procedure in. On the other
hand, the goal

in(d, T)

will cause several recursive calls of in before d is eventually found. Similarly,
the goal

in(e, T)

214 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

will fail only after the whole tree has been searched by recursive calls of in on al/
the subtrees of T.

This is, then, as inefficient as simply representing a set by a list. A major
improvement can, however, be achieved if there is an ordering relation
between the datain the set. Then the data in the tree can be ordered from left to
right according to this relation. We say that a non-empty tree t(Left, X, Right)
is ordered from left to right if:

(1) all the nodes in the left subtree, Left, are less than X; and
(2) all the nodes in the right subtree, Right, are greater than X; and
(3) both subtrees are also ordered.

Such a binary tree will be called a binary dictionary. Figure 9.6 shows an
example.

The advantage of ordering is that, to search for an object in a binary
dictionary, it is always sufficient to search at most one subtree. The key to this
economization when searching for X is that we can by comparing X and the
root immediately discard at least one of the subtrees. For example, let us
search for the item 6 in the tree of Figure 9.6. We start at the root, 5, compare 6
and 5, and establish 6 > 5. As all the data in the left subtree must be less than 3,
the only remaining possibility to find 6 is the right subtree. So we continue the
search in the right subtree, moving to node 8, etc.

The general method for searching in the binary dictionary is:

To find an item X in a dictionary D:

if X is the root of D then X has been found, otherwise

if X is less than the root of D then search for
X in the left subtree of D, otherwise

search for X in the right subtree of D;
e if D is empty the search fails.

Figure 9.6 A binary dictionary. Item 6 is reached by following the indicated path
5-58-—6.

OPERATIONS ON DATA STRUCTURES 215

in(X, t(-, X,).
in(X, t(Left, Root, Right)) :-

gt(Root, X), % Root greater than X

in(X, Left). % Search left subtree
in(X, t(Left, Root, Right)) :-

gt(X, Root), % X greater than Root

in(X, Right). % Search right subtree

Figure 9.7 Finding an item X in a binary dictionary.

These rules are programmed as the procedure in in Figure 9.7. The relation
gt(X, Y)means: X is greater than Y. If the items stored in the tree are numbers
then this relation is simply X > Y.

In a way, the in procedure itself can be also used for constructing a binary
dictionary. For example, the following sequence of goals will construct a
dictionary D that contains the elements 5, 3, 8:

?- in(5, D), in(3, D), in(8, D).
D = t(t(D1, 3, D2), 5, t(D3, 8, D4)).

The variables D1, D2, D3 and D4 are in fact four unspecified subtrees. They
can be anything and D will still contain the given items 3, 5 and 8. The
dictionary that is constructed depends on the order of goals in the question
(Figure 9.8).

D3 D4

Figure 9.8 (a) Tree D that results from the sequence of goals; in(5, D), in (3, D),
in(8, D). (b) Tree resulting from: in(3, D), in(5, D), in(8, D).

216 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

A comment is in order here on the search efficiency in dictionaries.
Generally speaking, the search for an item in a dictionary is more efficient than
searching in a list. What is the improvement? Let n be the number of items in
our data set. If the set is represented by a list then the expected search time will
be proportional to its length n. On average, we have to scan the list up to
something like half-way through it. If the set is represented by a binary
dictionary, the search time will be roughly proportional to the height of the
tree. The height of a tree is the length of a longest path between the root and a
leaf in the tree. The height, however, depends on the shape of the tree.

We say that a tree is (approximately) balanced if, for each node in the
tree, its two subtrees accommodate approximately equal number of items. If a
dictionary with n nodes is nicely balanced then its height is proportional to
log n. We say that a balanced tree has the logarithmic complexity. The
difference between n and log n is the improvement of a balanced dictionary
over a list. This holds, unfortunately, only when a tree is approximately
balanced. If the tree gets out of balance its performance will degrade. In
extreme cases of totally unbalanced trees, a tree is in effect reduced to a list. In
such a case the tree’s height is n, and the tree’s performance is equally poor as
that of a list. Therefore we are always interested in balanced dictionaries.
Methods of achieving this objective will be discussed in Chapter 10.

Exercises
9.9 Define the predicates

binarytree(Object)
dictionary(Object)

to recognize whether Object is a binary tree or a binary dictionary
respectively, written in the notation of this section:
9.10 Define the procedure
height(BinaryTree, Height)
to compute the height of a binary tree. Assume that the height of the

empty tree is 0, and that of a one-element tree is 1.

9.11 Define the relation
linearize(Tree, List)

to collect all the nodes in Tree into a list.

9.12 Define the relation
maxelement(D, Item)

so that Item is the largest element stored in the binary dictionary D.

OPERATIONS ON DATA STRUCTURES 217

9.13 Modify the procedure
in(Item, BinaryDictionary)

by adding the third argument, Path, so that Path is the path between the
root of the dictionary and Item.

9.3 Insertion and deletion in binary dictionary

When maintaining a dynamic set of data we may want to insert new items into
the set and also delete some old items from the set. So one common repertoire
of operations on a set of data, S, is:

in(X, S) X is a member of S
add(S, X, S1) Add X to S giving S1
del(S, X, S1) Delete X from S giving S1

Let us now define the add relation. It is easiest to insert new data at the
bottom level of the tree, so that a new item becomes a leaf of the tree at such a
position that the ordering of the tree is preserved. Figure 9.9 shows changesin a
tree during a sequence of insertions. Let us call this kind of insertion

addleaf(D, X, D1)

Figure 9.9 Insertion into a binary dictionary at the leaf level. The trees correspond to
the following sequence of insertions: add(D1, 6, D2), add(D2, 7, D3), add(D3, 4, D4).

218 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

addleaf(nil, X, t(nil, X, nil)).
addleaf(t(Left, X, Right), X, t(Left, X, Right)).

addleaf(t(Left, Root, Right), X, t(Left1, Root, Right)) :-
gt(Root, X),
addleaf(Left, X, Left1).

addleaf(t(Left, Root, Right), X, t(Left, Root, Right1)) :-
gt(X, Root),
addleaf(Right, X, Right1).

Figure 9.10 Inserting an item as a leaf into the binary dictionary.

Rules for adding at the leaf level are:

The result of adding X to the empty tree is the tree t(nil, X, nil).
If X is the root of D then D1 = D (no duplicate item gets inserted).

If the root of D is greater than X then insert X into the left subtree of D; if
the root of D is less than X then insert X into the right subtree.

Figure 9.10 shows a corresponding program.

Let us now consider the delete operation. It is easy to delete a leaf, but
deleting an internal node is more complicated. The deletion of a leaf can be in
fact defined as the inverse operation of inserting at the leaf level:

delleaf(D1, X, D2) :-
addleaf(D2, X, D1).

° delete X

>

A S | ‘

Left Right Left Right

Figure 9.11 Deleting X from a binary dictionary. The problem is how to patch up the
tree after X is removed.

OPERATIONS ON DATA STRUCTURES 219

remove X > < transfer Y
Right Le

Left Right Left ft Rightl

Figure 9.12 Filling the gap after removal of X.

Unfortunately, if X is an internal node then this does not work because of the
problem illustrated in Figure 9.11. X has two subtrees, Left and Right. After X
is removed, we have a hole in the tree and Left and Right are no longer
connected to the rest of the tree. They cannot both be directly connected to the
father of X, A, because A can accommodate only one of them.

If one of the subtrees Left and Right is empty then the solution is simple:
the non-empty subtree is connected to A. If they are both non-empty then one
idea is as shown in Figure 9.12. The left-most node of Right, Y, is transferred
from its current position upwards to fill the gap after X. After this transfer, the
tree remains ordered. Of course, the same idea works symmetrically, with the
transfer of the right-most node of Left.

According to these considerations, the operation to delete an item from
the binary dictionary is programmed in Figure 9.13. The transfer of the left-
most node of the right subtree is accomplished by the relation

delmin(Tree, Y, Treel)

del(t(nil, X, Right), X, Right).
del(t(Left, X, nil), X, Left).

del(t(Left, X, Right), X, t(Left, Y, Rightl)) :-
delmin(Right, Y, Rightl).

del(t(Left, Root, Right), X, t(Leftl, Root, Right)) :-
gt(Root, X),
del(Left, X, Leftl).

del(t(Left, Root, Right), X, t(Left, Root, Right1)) :-
gt(X, Root),
del(Right, X, Right1).

delmin(t(nil, Y, R), Y, R).

delmin(t(Left, Root, Right), Y, t(Left1l, Root, Right)) :-
delmin(Left, Y, Left1).

Figure 9.13 Deleting from the binary dictionary.

220 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

D
L R
add X at root
X<Y Y<X
D1
L2 R

Figure 9.14 Inserting X at the root of a binary dictionary.

where Y is the minimal (that is, the left-most) node of Tree, and Treel is Tree
with Y deleted.

There is another elegant solution to add and delete. The add relation can
be defined non-deterministically so that a new item is inserted at any level of
the tree, not just at the leaf level. The rules are:

To add X to a binary dictionary D either:

® add X at the root of D (so that X becomes the new root}, or

® if the root of D is greater than X then insert X into the left
subtree of D, otherwise insert X into the right subtree of D.

The difficult part of this is the insertion at the root of D. Let us formulate this
operation as a relation

addroot(D, X, D1)

where X is the item to be inserted at the root of D and D1 is the resulting
dictionary with X as its root. Figure 9.14 illustrates the relations between X, D
and D1. The remaining question is now: What are the subtrees L1 and L.2 in

Figure 9.14 (or R1 and R2 alternatively)? The answer can be derived from the
following constraints:

® L1 and L2 must be binary dictionaries;

OPERATIONS ON DATA STRUCTURES 221

e the set of nodes in L1 and L2 is equal to the set of nodes in L;

e allthe nodes in L1 are less than X, and all the nodes in L2 are greater than
X.

The relation that imposes all these constraints is just our addroot relation.
Namely, if X were added as the root into L, then the subtrees of the resulting
tree would be just L1 and L2. In Prolog: L1 and L2 must satisfy the goal

addroot(L, X, t(L1, X, L2))
The same constraints apply to R1 and R2:
addroot(R, X, t(R1, X, R2))

Figure 9.15 shows a complete program for the ‘non-deterministic’ insertion
into the binary dictionary.

The nice thing about this insertion procedure is that there is no restriction
on the level of insertion. Therefore add can be used in the inverse direction in
order to delete an item from the dictionary. For example, the following goal list

add(D, X, D1) :-

addroot(D, X, D1). % Add X as new root
add(t(L, Y, R), X, t(L1, Y, R)) :- % Insert X into left subtree
gt(Y, X),
add(L, X, L1).
add(t(L, Y, R), X, t(L, Y, R1)) :- % Insert X into right subtree
gt(X, Y),
add(R, X, R1).
addroot(nil, X, t(nil, X, nil)). % Insert into empty tree
addroot(t(L, X,R), X, t(L, X, R)). % X already in tree
addroot(t(L, Y, R), X, t(L1, X, t(L2, Y, R))) :-
gt(Y, X),

addroot(L, X, t(L1, X, L2)).

addroot(t(L, Y, R), X, t(t(L, Y, R1), X, R2)) :-
gi(X, Y),
addroot(R, X, t(R1, X, R2)).

Figure 9.15 Insertion into the binary dictionary at any level of the tree.

222 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

constructs a dictionary D containing the items 3, 5, 1, 6, and then deletes 5
yielding a dictionary DD:

add(nil, 3, D1), add(D1, 5, D2), add(D2, 1, D3),
add(D3, 6, D), add(DD, 5, D)

9.4 Displaying trees

Like all data objects in Prolog, a binary tree, T, can be directly output by the
built-in procedure write. However, the goal

write(T)

will only output all the information, but will not graphically indicate the actual
tree structure. It can be rather tiring to imagine the actual tree structure from a
Prolog term that represents that tree. Therefore it is often desirable to have a
tree typed out in a way that graphically indicates its structure.

There is a relatively simple method for displaying trees in such a form.
The trick is to display a tree growing from left to right, and not from top to
bottom as trees are usually pictured. The tree is rotated to the left so that the
root becomes the left-most element, and the leaves are moved to the right.
Figure 9.16 illustrates.

Let us define a procedure

show(T)
/ right subtree
(a) (b) ¥
9
[18,
\\ 7

-

1
A
\

Figure 9.16 (a) A tree as normally pictured. (b) The same tree as typed out by the
procedure show (arcs are added for clarity).

left subtree

OPERATIONS ON DATA STRUCTURES 223

show(T) :-
show2(T, 0).

show2(nil,).

show2(t(L, X, R), Indent) :-
Ind2 is Indent + 2,
show2(R, Ind2),
tab(Indent), write(X), nl,
show2(L, Ind2).

Figure 9.17 Displaying a binary tree.

to display a tree T in the form indicated in Figure 9.16. The principle is:
To show a non-empty tree, T:

(1) show the right subtree of T, indented by some distance, H, to
the right;

(2) write the root of T;
(3) show the right subtree of T indented by distance H to the right.

The indentation distance H, which can be appropriately chosen, is an addi-
tional parameter for displaying trees. Introducing H we have the procedure

show2(T, H)

to display T indented H spaces from the left margin. The relation between the
procedures show and show2 is:

show(T) :- show2(T, 0).

The complete program, which indents by 2, is shown in Figure 9.17. The
principle of achieving such an output format can be easily adopted for display-
ing other types of trees.

Exercise

9.14 Our procedure for displaying trees shows a tree in an unusual orientation,
so that the root is on the left and the leaves of the tree are on the right.
Write a (more difficult) procedure to display a tree in the usual orienta-
tion with the root at the top and the leaves at the bottom.

224 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE
9.5 Graphs

9.5.1 Representing graphs

Graph structures are used in many applications, such as representing relations,
situations or problems. A graph is defined by a set of nodes and a set of edges,
where each edge is a pair of nodes. When the edges are directed they are also
called arcs. Arcs are represented by ordered pairs. Such a graph is a directed
graph. The edges can be attached costs, names, or any kind of labels, depend-
ing on the application. Figure 9.18 shows examples.

Graphs can be represented in Prolog in several ways. One method is to
represent each edge or arc separately as one clause. The graphs in Figure 9.18
can be thus represented by sets of clauses, for example:

connected(a, b).
connected(b, ¢).

arc(s, t, 3).
arc(t, v, 1).
arc(u, t, 2).

Another method is to represent a whole graph as one data object. A
graph can be thus represented as a pair of two sets: nodes and edges. Each set
can be represented as a list; each edge is a pair of nodes. Let us choose the
functor graph to combine both sets into a pair, and the functor e for edges.
Then one way to represent the (undirected) graph in Figure 9.18 is:

G1 = graph([a,b,c,d], [e(a,b), e(b,d), e(b,c), e(c,d)])

To represent a directed graph we can choose the functors digraph and a (for
arcs). The directed graph of Figure 9.18 is then:

G2 = digraph([s,t,u,v], [a(s,t,3), a(t,v,1), a(t,u,5), a(u,t,2), a(v,u,2)])

Figure 9.18 (a) A graph. (b) A directed graph with costs attached to the arcs.

OPERATIONS ON DATA STRUCTURES 225

If each node is connected to at least one other node then we can omit the list of
nodes from the representation as the set of nodes is then implicitly specified by
the list of edges.

Yet another method is to associate with each node a list of nodes that are
adjacent to that node. Then a graph is a list of pairs consisting of a node plus its
adjacency list. Our example graphs can then, for example, be represented by:

G1 =[a->[b], b->[a,c,d], c->[b,d],d-> [bc]]

G2 = [s-> [t/3], t -> [u/5, v/1], u -> [t/2], v -> [u/2]]

The symbols ‘->’ and /" above are, of course, infix operators.

What will be the most suitable representation will depend on the applica-
tion and on operations to be performed on graphs. Two typical operations are:

e find a path between two given nodes;
e find a subgraph, with some specified properties, of a graph.
i

following sections we will look at some simple programs for finding a path and

Finding Espanning tree of a graph is an example of the latter operation. In the
for finding a spanning tree.

9.5.2 Finding a path

Let G be a graph, and A and Z two nodes in G. Let us define a relation
path(A, Z, G, P)

where P is an acyclic path between A and Z in G. P is represented as a list of
nodes on the path. If G is the graph in the left-hand side of Figure 9.18 then:

path(a, d, G, [a,b,d])
path(a, d, G, [a,b,c,d])

Since a path must not contain any cycle, a node can appear in the path at most
once. One method to find a path is:

To ﬁnd an acyclic path, P, between A and Z in a graph, G:
If A = Z then P = [], otherwise

find an acyclic path, P1, from some node Y to Z, and find
a path from A to Y avoiding the nodes in P1.

This formulation implies another relation: find a path under the restriction of

226 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Path

Figure 9.19 The pathl relation: Path is a path between A and Z; the last part of Path
overlaps with Pathl.

avoiding some subset of nodes (P1 above). We will, accordingly, define
another procedure:

pathl(A, P1, G, P)
As illustrated in Figure 9.19, the arguments are:

A is a node,
G is a graph,
P1is a path in G,

P is an acyclic path in G that goes from A to the beginning of P1 and
continues along P1 up to its end.

The relation between path and path1 is:
path(A, Z, G, P) :- pathl(A, [Z], G, P).

Figure 9.19 suggests a recursive definition of pathl. The boundary case arises
when the start node of P1 (Y in Figure 9.19) coincides with the start node of P,
A. If the start nodes do not coincide then there must be a node, X, such that:

(1) Y is adjacent to X, and
(2) Xisnotin P1, and
(3) P must satisfy the relation pathl(A, [X | P1], G, P)

A complete program is shown in Figure 9.20. In this program, member is the list
membership relation. The relation

adjacent(X, Y, G)
means that there is an arc from X to Y in graph G. The definition of this relation
depends on the representation of graphs. If G is represented as a pair of sets

(nodes and edges),

G = graph(Nodes, Edges)

OPERATIONS ON DATA STRUCTURES 227

path(A, Z, Graph, Path) :-
path1(A, [Z], Graph, Path).

pathl([A | Pathl], _, [A | Path1]).

pathl(A, [Y | Pathl], Graph, Path) :-
adjacent(X, Y, Graph),
not member(X, Pathl), % No-cycle condition
pathl(A, [X, Y | Path1], Graph, Path).

Figure 9.20 Finding an acyclic path, Path, from A to Z in Graph.

then:

adjacent(X, Y, graph(Nodes, Edges)) :-
member(e(X,Y), Edges);
member(e(Y,X), Edges).

A classical problem on graphs is to find a Hamiltonian path; that is, an
acyclic path comprising all the nodes in the graph. Using path this can be done
as follows:

hamiltonian(Graph, Path) :-
path(_, _, Graph, Path),
covers(Path, Graph).

covers(Path, Graph) :-
not (node(N, Graph), not member(N, Path)).

Here, node(N, Graph) means: N is a node in Graph.

We can attach costs to paths. The cost of a path is the sum of the costs of
the arcs in the path. If there are no costs attached to the arcs then we can talk
about the length instead, counting 1 for each arc in the path. Our path and
pathl relations can be modified to handle costs by introducing an additional
argument, the cost, for each path:

path(A, Z, G, P, C)
pathi(A, P1, C1, G, P, C)

Here, Cis the cost of P and C1 is the cost of P1. The relation adjacent now also
has an extra argument, the cost of an arc. Figure 9.21 shows a path-finding
program that computes a path and its cost.

This procedure can be used for finding a minimum cost path. We can find

228 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

path(A, Z, Graph, Path, Cost) :-
pathl(A, [Z], 0, Graph, Path, Cost).

pathl(A, [A | Pathl], Costl, Graph, [A | Pathl], Cost1).

pathl(A, [Y | Path1], Cost1, Graph, Path, Cost) :-
adjacent(X, Y, CostXY, Graph),
not member(X, Pathl),
Cost2 is Costl + CostXY,
pathl(A, [X, Y | Path1], Cost2, Graph, Path, Cost).

Figure 9.21 Path-finding in a graph: Path is an acyclic path with cost Cost from A to Z
in Graph.

such a path between two nodes, nodel and node2, in some graph G by the
goals:

path(nodel, node2, Graph, MinPath, MinCost),
not (path(nodel, node2, Graph, _, Cost), Cost < MinCost))

We can also find a maximum cost path between any pair of nodes in a graph G
by the goals:

path(_, _, Graph, MaxPath, MaxCost),
not (path(_, _, Graph, _, Cost), Cost > MaxCost))

It should be noted that this is a very inefficient way for finding minimal or
maximal paths. This method unselectively investigates possible paths and is
completely unsuitable for large graphs because of its high time complexity. The
path-finding problem frequently arises in Artificial Intelligence. We will study
more sophisticated methods for finding optimal paths in Chapters 11 and 12.

9.5.3 Finding a spanning tree of a graph

A graph is said to be connected if there is a path from any node to any other
node. Let G = (V, E) be a connected graph with the set of nodes V and the set
of edges E. A spanning tree of G is a connected graph T = (V, E’) where E' is a
subset of E such that:

(1) Tis connected, and
(2) there is no cycle in T.

These two conditions guarantee that T is a tree. For the left-hand side graph of

OPERATIONS ON DATA STRUCTURES 229

Figure 9.18, there are three spanning trees, which correspond to three lists of
edges:

Treel = [a-b, b-c, c-d]
Tree2 = [a-b, b-d, d-c]
Tree3 = [a-b, b-d, b-c]

Here each term of the form X-Y denotes an edge between nodes X and Y. We
can pick any node in such a list as the root of a tree. Spanning trees are of
interest, for example, in communication problems because they provide, with
the minimum number of communication lines, a path between any pair of
nodes.

We will define a procedure

stree(T, G)

where T is a spanning tree of G. We will assume that G is connected. We can
imagine constructing a spanning tree algorithmically as follows: Start with the
empty set of edges and gradually add new edges from G, taking care thata cycle
is never created, until no more edge can be added because it would create a
cycle. The resulting set of edges defines a spanning tree. The no-cycle condition
can be maintained by a simple rule: an edge can be added only if one of its
nodes is already in the growing tree, and the other node is not yet in the tree. A
program that implements this idea is shown in Figure 9.22. The key relation in
this program is

spread(Treel, Tree, G)

All the three arguments are sets of edges. G is a connected graph; Treel and
Tree are subsets of G such that they both represent trees. Tree is a spanning tree
of G obtained by adding zero or more edges of G to Treel. We can say that
‘Treel gets spread to Tree’.

It is interesting that we can also develop a working program for construct-
ing a spanning tree in another, completely declarative way, by simply stating
mathematical definitions. We will assume that both graphs and trees are
represented by lists of their edges, as in the program of Figure 9.22. The
definitions we need are:

(1) T is a spanning tree of G if:

® T is asubset of G, and
e Tisatree, and
o T ‘covers’ G; that is, each node of G is also in T.

230 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% Finding a spanning tree of a graph
%

% Trees and graphs are represented by lists of their

% edges. For example:
% Graph = [a-b, b-c, b-d, c-d]

stree(Graph, Tree) :-
member(Edge, Graph),
spread([Edge], Tree, Graph).

spread(Treel, Tree, Graph) :-
addedge(Treel, Tree2, Graph),
spread(Tree2, Tree, Graph).

spread(Tree, Tree, Graph) :-
not addedge(Tree, _, Graph).

addedge(Tree, [A-B | Tree], Graph) :-

adjacent(A, B, Graph),
node(A, Tree),
not node(B, Tree).

% Tree is a spanning tree of Graph

% No edge can be added
% without creating a cycle

% Nodes A and B adjacent in Graph
% A in Tree
% A-B doesn’t create a cycle in Tree

adjacent(A, B, Graph) :-
member(A-B, Graph);
member(B-A, Graph).

node(A, Graph) :-
adjacent(A, _, Graph).

% A is a node in Graph if
% A is adjacent to anything in Graph

Figure 9.22 Finding a spanning tree of a graph: an ‘algorithmic’ program. The
program assumes that the graph is connected.

(2) A setof edges T is a tree if:

® Tis connected, and
® T has no cycle.

Using our path program of the previous section, these definitions can be stated
in Prolog as shown in Figure 9.23. It should be noted, however, that this
program is, in this form, of little practical interest because of its inefficiency.

Exercise

9.15 Consider spanning trees of graphs that have costs attached to edges. Let
the cost of a spanning tree be defined as the sum of the costs of all the
edges in the tree. Write a program to find a minimum-cost spanning tree
of a given graph.

OPERATIONS ON DATA STRUCTURES 231

% Finding a spanning tree
% Graphs and trees are represented as lists of edges.

stree(Graph, Tree) :-
subset(Graph, Tree),
tree(Tree),
covers(Tree, Graph).

tree(Tree) :-
connected(Tree),
not hasacycle(Tree).

connected(Tree) :-
not (node(A, Tree), node(B, Tree), not path(A, B, Tree, _)).

hasacycle(Tree) :-
adjacent(A, B, Tree),
path(A, B, Tree, [A, X, Y | _]). % A path of length > 1

covers(Tree, Graph) :-
not (node(A, Graph), not node(A, Tree)).

subset([], []).

subset([X | L], S) :-
subset(L, L1),
(S=L1;S=[X]|L1]).

Figure 9.23 Finding a spanning tree of a graph: a ‘declarative’ program. Relations
node and adjacent are as in Figure 9.22.

Summary

In this chapter we studied Prolog implementations of some frequently used
data structures and associated operations on them. These include:

® Lists:

variations in representing lists
sorting lists:

bubble sort

insertion sort

quicksort

efficiency of these procedures

232 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

® Representing sets as binary trees and binary dictionaries:

searching for an item in a tree

adding an item

deleting an item

adding as a leaf, adding as the root

the balance of trees and its relation to the efficiency of these operations
displaying trees '

® Graphs:

representing graphs
finding a path in a graph
finding a spanning tree of a graph

References

In this chapter we have tackled important topics of sorting and of maintaining
data structures for representing sets. General description of structures and
algorithms that were programmed in this chapter can be found, for example, in
Aho, Hopcroft and Ullman (1974, 1984) or Baase (1978). The behaviour of
these algorithms, in particular their time complexity, is also studied. Gonnet
(1983) is a good and concise collection of many related algorithms and results
of their mathematical analysis.

The Prolog program for insertion at any level of the binary tree (Section
9.3) was first shown to the author by M. van Emden (personal
communication).

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1974) The Design and
Analysis of Computer Algorithms. Addison-Wesley.

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1983) Data Structures and
Algorithms. Addison-Wesley.

Baase, S. (1978) Computer Algorithms. Addison-Wesley.

Gonnet, G. H. (1984) Handbook of Algorithms and Data Structures. Addison-
Wesley.

1 0 Advanced Tree
Representations

In this chapter we look at advanced techniques for representing data sets by
trees. The key idea is to keep the tree balanced, or approximately balanced, in
order to prevent the tree from degenerating toward a list. Such tree-balancing
schemes guarantee relatively fast, logarithmic-time data-access even in the
worst case. Two such schemes are presented in this chapter: 2-3 trees and
AVL-trees. (The knowledge of this chapter is not a prerequisite to any other
chapter.)

10.1 The 2-3 dictionary

A binary tree is said to be well balanced if both its subtrees are of approxi-
mately equal height (or size) and they are also balanced. The height of a
balanced tree is approximately log n where n is the number of nodes in the tree.
The time needed to evaluate the relations in, add and delete on binary diction-
aries grows proportionally with the height of the tree. On balanced diction-
aries, then, all these operations can be done in time that is in the order of log .
The logarithmic growth of the complexity of the set membership testing is a
definite improvement over the list representation of sets, where the complexity
grows linearly with the size of the data set. However, poor balance of a tree will
degrade the performance of the dictionary. In extreme cases, the binary
dictionary degenerates into a list, as shown in Figure 10.1. The form of the

Figure 10.1 A totally unbalanced binary dictionary. Its performance is reduced to that
of a list.

233

234 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

dictionary depends on the sequence in which the data is inserted. In the best
case we get a good balance with performance in the order log n, and in the
worst case the performance is in the order n. Analysis shows that on average,
assuming that any sequence of data is equally likely, the complexity of in, add
and delete is still in the order log n. So the average performance is, fortunately,
closer to the best case than to the worst case. There are, however, several
rather simple schemes for keeping good balance of the tree regardless of the
data sequence. Such schemes guarantee the worst case performance of in, add
and delete in the order log n. One of them is the 2-3 tree; another scheme is the
AVL-tree.

The 2-3 tree is defined as follows: it is either empty, or it consists of a
single node, or it is a tree that satisfies the following conditions:

® each internal node has two or three children, and
o all the leaves are at the same level.

A 2-3 dictionary is a 2-3 tree in which the data items are stored in the leaves,
ordered from left to right. Figure 10.2 shows an example. The internal nodes
contain labels that specify the minimal elements of the subtrees as follows:

e if an internal node has two subtrees, this internal node contains the
minimal element of the second subtree;

e if aninternal node has three subtrees then this node contains the minimal
elements of the second and of the third subtree.

To search for an item, X, in a 2-3 dictionary we start at the root and move
toward the bottom level according to the labels in the internal nodes. Let the
root contain the labels M1 and M2. Then:

e if X < M1 then continue the search in the left subtree, otherwise

Figure 10.2 A 2-3 dictionary. The indicated path corresponds to searching for the item
10.

ADVANCED TREE REPRESENTATIONS 235

e if X < M2 then continue the search in the middle subtree, otherwise
e continue the search in the right subtree.

If the root only contains one label, M, then proceed to the left subtree if X <M,
and to the right subtree otherwise. This is repeated until the leaf level is
reached, and at this point X is either successfully found or the search fails.

As all the leaves are at the same level, the 2-3 tree is perfectly balanced
with respect to the heights of the subtrees. All search paths from the root to a
leaf are of the same length which is of the order log n, where n is the number of
items stored in the tree.

AL

Figure 10.3 Inserting into a 2-3 dictionary. The tree first grows in breadth and then
upwards.

When inserting new data, the 2-3 tree can also grow in breadth, not only
in depth. Each internal node that has two children can accommodate an
additional child which results in the breadth-wise growth. If, on the other hand,
anode with three children accepts another child then this node is split into two
nodes, each of them taking over two of the total of four children. The so-gener-
ated new internal node gets incorporated further up in the tree. If this happens
at the top level then the tree is forced to grow upwards. Fjgure 10.3 illustrates
these principles.

Insertion into the 2-3 dictionary will be programmed as a relation

add23(Tree, X, NewTree)
where NewTree is obtained by inserting X into Tree. The main burden of
insertion will be transferred to two auxiliary relations, both called ins. The first
one has three arguments:

ins(Tree, X, NewTree)

where NewTree is the result of inserting X into Tree. Tree and NewTree have
the same height. But, of course, it is not always possible to preserve the same

236 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Tree NTa Mb NTb

C5.79 6 1D

Figure 10.4 The objects in the figure satisfy the relation ins(Tree, 6, NTa, Mb, NTb).

height after insertion. Therefore we have another ins relation, with five argu-
ments, to cater for this case:

ins(Tree, X, NTa, Mb, NTb)

Here, when inserting X into Tree, Tree is split into two trees: NTa and NTb.
Both NTa and NTb have the same height as Tree. Mb is the minimal element of
NTb. Figure 10.4 shows an example.

In the program, a 2-3 tree will be represented, depending on its form, as
follows:

e il represents the empty tree
I(X) represents a single node tree, a leaf with item X
n2(T1, M, T2) represents a tree with two subtrees, T1 and T2; M is the
minimal element of T2

e n3(T1, M2, T2, M3, T3) represents a tree with three subtrees, T1, T2
and T3; M2 is the minimal element of T2, and M3 is the minimal element
of T3

T1, T2 and T3 are all 2-3 trees.
The relation between add23 and ins is: if after insertion the tree does not
grow upwards then simply

add23(Tree, X, NewTree) :-
ins(Tree, X, NewTree).

If, however, the height after insertion increases, then ins determines the two
subtrees, T1 and T2, which are then combined into a bigger tree:

add23(Tree, X, n2(T1, M, T2)) :-
ins(Tree, X, T1, M, T2).

The ins relation is more complicated because it has to deal with many cases:
inserting into the empty tree, a single node tree, a tree of type n2 or n3.
Additional subcases arise from insertion into the first, second or third subtree.

ADVANCED TREE REPRESENTATIONS 237

Accordingly, ins will be defined by a set of rules so that each clause about ins
will deal with one of the cases. Figure 10.5 illustrates some of these cases. The
cases in this figure translate into Prolog as follows:

Case a
ins(n2(T1, M, T2), X, n2(NT1, M, T2)) :-
gt(M, X), % M greater than X
ins(T1, X, NT1).
Case b
ins(n2(T1, M, T2), X, n3(NT1a, Mb, NT1b, M, T2)) :-
gt(M, X),

ins(T1, X, NT1a, Mb, NT1b).

Case ¢

ins(n3(T1, M2, T2, M3, T3), X,
n2(NT1a, Mb, NT1b), M2, n2(T2, M3, T3)) :-
gt(M2, X),
ins(T1, X, NT1a, Mb, NT1b).

(a)
M>X

CMD
ins(T1,X,NT1)
A NYAN

(Mb, M)

(0)
M>X
ins(T1,X,NT1a, Mb,NT1b)

— NTIa\ AT /T2

M2 > X
ins(T1,X,NT1a,Mb,NT1b)

_i >y P

T1 T2 T3

Figure 10.5 Some cases of the ins relation.

(a) ins(n2(T1, M, T2), X, n2(NT1, M, T2));

(b) ins(n2(T1, M, T2), X, n3(NT1a, Mb, NT1b, M, T2));

(c) ins(n3(T1, M2, T2, M3, T3), X, n2(NTla, Mb, NT1b), M2, n2(T2, M3, T3)).

238 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% Insertion and deletion in the 2-3 dictionary

add23(Tree, X, Treel) :- | % Add X to Tree giving Treel
ins(Tree, X, Treel). % Tree grows in breadth
add23(Tree, X, n2(T1, M2, T2)) :- % Tree grows upwards

ins(Tree, X, T1, M2, T2).

del23(Tree, X, Treel) :- % Delete X from Tree giving Treel
add23(Treel, X, Tree).

ins(nil, X, 1(X)).

ins(1(A), X, I(A), X, I(X)) :-
gt(X, A).

ins(1(A), X, I(X), A, I(A)) :-
gt(A, X).

ins(n2(T1, M, T2), X, n2(NT1, M, T2)) :-
gt(M, X),
ins(T1, X, NT1).

ins(n2(T1, M, T2), X, n3(NTla, Mb, NT1b, M, T2)) :-
gt(M, X),
ins(T1, X, NT1a, Mb, NT1b).

ins(n2(T1, M, T2), X, n2(T1, M, NT2)) :-
gt(X, M),
ins(T2, X, NT2).

ins(n2(T1, M, T2), X, n3(T1, M, NT2a, Mb, NT2b)) :-
gt(X, M),
ins(T2, X, NT2a, Mb, NT2b).

ins(n3(T1, M2, T2, M3, T3), X, n3(NT1, M2, T2, M3, T3)) :-
gt(M2, X),
ins(T1, X, NT1).

ins(n3(T1, M2, T2, M3, T3), X,
n2(NT1a, Mb, NT1b), M2, n2(T2, M3, T3)) :-
gt(M2, X), ‘
ins(T1, X, NT1a, Mb, NT1b).

ins(n3(T1, M2, T2, M3, T3), X, n3(T1, M2, NT2, M3, T3)) :-
gt(X, M2), gt(M3, X),
ins(T2, X, NT2).

ADVANCED TREE REPRESENTATIONS 239

ins(n3(T1, M2, T2, M3, T3), X,
n2(T1, M2, NT2a), Mb, n2(NT2b, M3, T3)) :-
gt(X, M2), gt(M3, X),
ins(T2, X, NT2a, Mb, NT2b).

ins(n3(T1, M2, T2, M3, T3), X, n3(T1, M2, T2, M3, NT3)) :-
gt(X, M3),
ins(T3, X, NT3).

ins(n3(T1, M2, T2, M3, T3), X,
n2(T1, M2, T2), M3, n2(NT3a, Mb, NT3b)) :-
gt(X, M3),
ins(T3, X, NT3a, Mb, NT3b).

Figure 10.6 Inserting and deleting in the 2-3 dictionary. In this program, an attempt
to insert a duplicate item will fail.

Figure 10.6 shows the complete program for inserting into and deleting
from the 2-3 dictionary. The add23 procedure can be used in the reverse
direction for deleting by:

del23(T, X, T1) :- add23(T1, X, T).

Figure 10.7 shows a program for displaying 2-3 trees.

Our program occasionally does some unnecessary backtracking. If the
three-argument ins fails then the five-argument ins is called, which redoes part
of the work. This source of inefficiency can easily be eliminated by, for
example, redefining ins as:

ins2(Tree, X, NewTrees)
NewTrees is a list of length 1 or 3, as follows:

NewTrees = [NewTree] if ins(Tree, X, NewTree)

NewTrees = [NTa, Mb, NTb] if ins(Tree, X, NTa, Mb, NTb)
The add23 relation would be, accordingly, redefined as:
add23(T, X, T1) :-

ins2(T, X, Trees),
combine(Trees, T1).

The combine relation has to produce a single tree, T1, from the list Trees.

240 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% Displaying 2-3 dictionary

show(T) :- . 15
show(T, 0). -

. 15

show(nil,).

show(1(A), H) :- 13
tab(H), write(A), nl. -

show(n2(T1, M, T2), H) :- 13
HlisH + 5, .
show(T2, H1),
tab(H), write(——), nl,
tab(H), write(M), nl,

12

12

tab(H), write(—), nl, 10 9
show(T1, H1). .
show(n3(T1, M2, T2, M3, T3), H) :- 3
HlisH + 5, - .
show(T3, H1), 8
tab(H), write(——), nl, - ,
tab(H), write(M3), nl, .]
show(T2, H1), =
tab(H), write(M2), nl, i 7
tab(H), write(——), nl, - o
show(T1, H1). (a) - 5
S,
4
4
- 3
3
¢ .

Figure 10.7 (a) A program to display a 2-3 dictionary. (b) The dictionary of Figure
10.2 as displayed by this program.

Exercises
10.1 Define the relation
in(Item, Tree)

to search for Item in a 2-3 dictionary Tree.

ADVANCED TREE REPRESENTATIONS 241

10.2 Modify the program of Figure 10.6 to avoid backtracking (define rela-
tions ins2 and combine).

10.2 AVL-tree: an approximately balanced tree
AVL-tree is a binary tree that has the following properties:

(1) Its left subtree and right subtree differ in height by 1 at the most.
(2) Both subtrees themselves are also AVL-trees.

This definition allows for trees that are slightly out of balance. It can be shown
that the height of an AVL-tree is always, even in the worst case, roughly
proportional to log n where n is the number of nodes in the tree. This
guarantees the logarithmic performance for the operations in, add and del.
Operations on the AVL-dictionary are essentially the same as on binary
dictionaries, with some additions to maintain approximate balance of the tree.
If the tree gets out of approximate balance after an insertion or deletion then
some additional mechanism will get it back into the required degree of balance.
To implement this mechanism efficiently, we have to maintain some additional
information about the balance of the tree. Essentially we only need the
difference between the heights of its subtrees, which is either -1, 0 or +1. For
the sake of simplicity of the operations involved we will, however, prefer to
maintain the complete heights of trees and not only the differences.

We will define the insertion relation as
addavl(Tree, X, NewTree)

where both Tree and NewTree are AVL-dictionaries such that NewTree is Tree
with X inserted. AVL-trees will be represented by terms of the form:

t(Left, A, Right)/Height

where A is the root, Left and Right are the subtrees, and Height is the height of
the tree. The empty tree is represented by nil/0. Now let us consider the
insertion of X into a non-empty AVL-dictionary

Tree = t(L, A, R/H

We will start our discussion by only considering the case that X is greater than
A. Then Xis to be inserted into R and we have the following relation:

addavi(R, X, t(R1, B, R2)/Hb)

242 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

(a) &) (B) h—1
_|h
Hb= 1 hs1
h+2
L R R1 R2
h .
h—1 | possible addavi(R, X, t(R1,B,R2)/Hb)
h heights
h+1 of R

A°5° 4

-2
-1 -1

oo oo
=gl =i~ =
—

+

—

+

Figure 10.8 The problem of AVL insertion: (a) AVL-tree before inserting X, X > A;
(b) AVL-tree after inserting X into R; (c) ingredients from which the new tree is to be
constructed.

Figure 10.8 illustrates the following ingredients from which NewTree is to be
constructed:

L, A, R1, B, R2

What can be the heights of L, R, R1 and R2? L and R can only differ in height
by 1 at the most. Figure 10.8 shows what the heights of R1 and R2 can be. As
only one item, X, has been inserted into R, at most one of the subtrees R1 and
R2 can have the height h + 1.

In the case that X is less than A then the situation is analogous with left
and right subtrees interchanged. Therefore, in any case, we have to construct
NewTree from three trees (let us call them Treel, Tree2 and Tree3), and two
single items, A and B. Let us now consider the question: How can we combine
these five ingredients to make NewTree so that NewTreeis an AVL-dictionary?
The order from left to right in NewTree has to be:

Treel, A, Tree2, B, Tree3
We have to consider three cases:

(1) The middle tree, Tree2, is taller than both other trees.
(2) Treelis at least as tall as Tree2 and Tree3.
(3) Tree3 is at least as tall as Tree2 and Treel.

ADVANCED TREE REPRESENTATIONS 243

Rule 1:H2 > H1and H2 > H3 (B)
® ® © (4) O.
=
ANVAYANYANRYANYNANAN
H1 H2 H3
Rule2:H1 =z H2and H1 = H3 o

® ® A O

AT T AN

H1 H2 H3

Rule3: H3 zH2and H3 = H1 0

® ©® (A) A\

ANYANYANEREANDAN

H1 H2 H3

Figure 10.9 Three combination rules for AVL-trees.

Figure 10.9 shows how NewTree can be constructed in each of these cases. In
case 1, the middle tree Tree2 has to be decomposed and its parts incorporated
into NewTree. The three rules of Figure 10.9 are easily translated into Prolog as
a relation:

combine(Treel, A, Tree2, B, Tree3, NewTree)

The last argument, NewTree, is an AVL-tree constructed from five ingre-
dients, the first five arguments. Rule 1, for example, becomes:

combine(
T1/H1, A, t(T21,B,T22)/H2, C, T3/H3, %Five ingredients
t((T1/H1,A,T21)/Ha, B, t(T22,C,T3/H3)/Hc)/Hb) :- % Their combination

H2 > H1, H2 > H1, %Middle tree is tallest
Hais H1 + 1, % Height of left subtree
Hcis H3 + 1, % Height of right subtree
Hbis Ha + 1. % Height of the whole tree

244 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% Insertion into AVL-dictionary

addavl(nil/0, X, t(nil/0, X, nil/0)/1). % Add X to empty tree
addavl(t(L, Y, R)/Hy, X, NewTree) :- % Add X to non-empty tree
gt(Y, X),
addavl(L, X, t(L1, Z, L2)/_), % Add into left subtree

combine(L1, Z, L2, Y, R, NewTree). % Combine ingredients of NewTree

addavl(t(L, Y, R)/Hy, X, NewTree) :-
gt(X, Y),
addavl(R, X, t(R1, Z, R2)/_), % Add into right subtree
combine(L, Y, R1, Z, R2, NewTree).

combine(T1/H1, A, t(T21, B, T22)/H2, C, T3/H3,
t(t(T1/H1,A,T21)/Ha, B, t(T22,C,T3/H3)/Hc)/Hb) :-
H2 > H1, H2 > H3, % Middle subtree tallest
Hais H1 + 1,
HcisH3 + 1,
Hb is Ha + 1.

combine(T1/H1, A, T2/H2, C, T3/H3,
t(T1/H1, A, t(T2/H2,C,T3/H3)/Hc)/Ha) :-
H1 >= H2, H1 >= H3, % Tall left subtree
max1(H2, H3, Hc),
max1(H1, Hc, Ha).

combine(T1/H1, A, T2/H2, C, T3/H3,
t(t(T1/H1,A,T2/H2)/Ha, C, T3/H3)/Hc) :-
H3 >= H2, H3 >=H]1,
max1(H1, H2, Ha),
max1(Ha, H3, Hc).

% Tall right subtree

maxl(U, V, M) :- Mis1 +
U>V,!,MisU+ 1; % M is max. of Uand V

MisV + 1.

Figure 10.10 AVL-dictionary insertion. In this program, an attempt to insert a dupli-
cate will fail. See Figure 10.9 for combine.

A complete addavl program, which also computes the heights of the tree and
the subtrees, is shown as Figure 10.10.

Our program works with the heights of trees. A more economical repre-
sentation is, as said earlier, possible. In fact, we only need the balance, which
can only be -1, 0 or +1. The disadvantage of such economization would be,
however, somewhat more complicated combination rules.

R

ADVANCED TREE REPRESENTATIONS 245

Exercise
10.3 Define the relation
avl(Tree)

to test whether a binary tree Tree is an AVL-tree; that is, all the sibling
subtrees may differ in their heights by 1 at the most. Let binary trees be
represented by terms of the form t(Left, Root, Right) or nil.

Summary

® 2-3 trees and AVL-trees, implemented in this chapter, are types of
balanced trees.

® Balanced, or approximately balanced, trees guarantee efficient execu-
tion of the three basic operations on trees: looking for an item, adding or
deleting an item. All these operations can be done in time proportional to
log n, where n is the number of nodes in the tree.

References

2-3 trees are described in detail by, for example, Aho, Hopcroft and Ullman
(1974, 1983). In their 1983 book an implementation in Pascal is also given.
Wirth (1976) gives a Pascal program to handle AVL-trees. 2-3 trees are a
special case of more general B-trees. This and several other variations or data
structures related to 2-3 trees and AVL-trees are covered by Gonnet (1984)
together with various results on the behaviour of these structures.

A program for AVL-tree insertion that only uses tree-bias information
(that is, the difference between the heights of the subtrees -1, 0 or +1, and not
the complete height) was published by van Emden (1981).

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1974) The Design and Analysis
of Computer Algorithms. Addison-Wesley.

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1983) Data Structures and
Algorithms. Addison-Wesley.

Gonnet, G. H. (1984) Handbook of Algorithms and Data Structures. Addison-
Wesley.

van Emden, M. (1981) Logic Programming Newsletter 2.
Wirth, N. (1976) Algorithms and Data Structures = Programs. Prentice-Hall.

1 1 Basic Problem-Solving
Strategies

This chapter is centred around a general scheme, called state space, for repre-
senting problems. A state space is a graph whose nodes correspond to problem
situations, and a given problem is reduced to finding a path in this graph. We
will study examples of formulating problems using the state-space approach,
and discuss general methods for solving problems represented in this formal-
ism. Problem-solving involves graph searching and typically leads to the prob-
lem of dealing with alternatives. Two basic strategies for exploring

alternatives, presented in this chapter, are the depth-first search and the
breadth-first search.

11.1 Introductory concepts and examples

Let us consider the example in Figure 11.1. The problem is to find a plan for
rearranging a stack of blocks as shown in the figure. We are only allowed to
move one block at a time. A block can be grasped only when its top is clear. A
block can be put on the table or on some other block. To find a required plan,
we have to find a sequence of moves that accomplish the given transformation.

We can think of this problem as a problem of exploring among possible
alternatives. In the initial problem situation we are only allowed one alterna-
tive: put block C on the table. After C has been put on the table, we have three
alternatives:

® put A on table, or
® putAonC,or
e putConA

Figure 11.1 A blocks rearrangement problem.
246

BASIC PROBLEM-SOLVING STRATEGIES 247

Om®
®®'®®®

Figure 11.2 A graphical representation of the block manipulation problem. The
indicated path is a solution to the problem in Figure 11.1.

We will not seriously consider putting C on the table as this clearly has no effect
on the situation.

As this example illustrates, we have, in such a problem, two types of
concept:

(1) Problem situations.

(2) Legal moves, or actions, that transform problem situations into other
situations.

Problem situations and possible moves form a directed graph, called a state
space. A state space for our example problem is shown in Figure 11.2. The
nodes of the graph correspond to problem situations, and the arcs correspond
to legal transitions between states. The problem of finding a solution plan is
equivalent to finding a path between the given initial situation (the start node)
and some specified final situation, also called a goal node.

Figure 11.3 shows another example problem: an eight puzzle and its
representation as a path-finding problem. The puzzle consists of eight sliding
tiles, numbered by digits from 1 to 8, and arranged in a 3 by 3 array of nine cells.

248 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

113 11213
8|24 e 8| |4
70653 ? 71615
BE
81214
7165
1 3 11314
8|24 8|2
7165 7165
BE 112713 1]3]4 1 [3]4
81214 8 4 81215 8 2
7165 7065 716 716 |5

Figure 11.3 An eight puzzle and a corresponding graphical representation.

One of the cells is always empty, and any adjacent tile can be moved into the
empty cell. We can say that the empty cell is allowed to move around, swapping
its place with any of the adjacent tiles. The final situation is some special
arrangement of tiles, as shown for example in Figure 11.3.

It is easy to construct similar graph representations for other popular
puzzles. Straightforward examples are the Tower of Hanoi, or getting fox,
goose and grain across the river. In the latter problem, the boat can only hold
the farmer and one other object, and the farmer has to protect the goose from
the fox, and the grain from the goose. Many practical problems also naturally
fit this paradigm. Among them is the travelling salesman problem which is the
formal model of many practical optimization problems. The problem is defined
by a map with n cities and road distances between the cities. The task is to find a
shortest route from some starting city, visiting all the cities and ending in the
starting city. No city, with the exception of the starting one, may appear in the
tour twice.

Let us summarize the concepts introduced by these examples. The state
space of a given problem specifies the ‘rules of the game’: nodes in the state
space correspond to situations, and arcs correspond to ‘legal moves’, or

BASIC PROBLEM-SOLVING STRATEGIES 249

actions, or solution steps. A particular problem is defined by:

a state space,
a start node,

a goal condition (a condition to be reached); ‘goal nodes’ are those nodes
that satisfy this condition.

We can attach costs to legal moves or actions. For example, costs
attached to moving blocks in the block manipulation problem would indicate
that some blocks are harder to move than others. In the travelling salesman
problem, moves correspond to direct city-to-city journeys. Naturally, the costs
of such moves are the distances between the cities.

In cases where costs are attached to moves, we are normally interested in
minimum cost solutions. The cost of a solution is the sum of the costs of the arcs
along the solution path. Even if no costs are given we may have an optimization
problem: we may be interested in shortest solutions.

Before presenting some programs that implement classical algorithms for
searching state spaces, let us first discuss how a state space can be represented
in a Prolog program.

We will represent a state space by a relation

s(X, Y)

which is true if there is a legal move in the state space from a node X to a node
Y. We will say that Y is a successor of X. If there are costs associated with
moves then we will add a third argument, the cost of the move:

s(X, Y, Cost)

This relation can be represented in the program explicitly by a set of facts. For
typical state spaces of any significant complexity this would be, however,
impractical or impossible. Therefore the successor relation, s, is usually
defined implicitly by stating the rules for computing successor nodes of a given
node.

Another question of general importance is, how to represent problem
situations, that is nodes themselves. The representation should be compact,
but it should also enable efficient execution of operations required; in particu-
lar, the evaluation of the successor relation, and possibly the associated costs.

As an example, let us consider the block manipulation problem of Figure
11.1. We will consider a more general case, so that there are altogether any
number of blocks that are arranged in one or more stacks. The number of
stacks will be limited to some given maximum to make the problem more
interesting. This may also be a realistic constraint because a robot that manipu-
lates blocks may be only given a limited working space on the table.

A problem situation can be represented as a list of stacks. Each stack can

250 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

be, in turn, represented by a list of blocks in that stack ordered so that the top
block in the stack is the head of the list. Empty stacks are represented by empty
lists. The initial situation of the problem in Figure 11.1 can be thus represented
by:

[[c,a,b], [1, [11]

A goal situation is any arrangement with the ordered stack of all the blocks.
There are three such situations:

[[a,b,c], [1, [11]

[1, [a,bse], [1]

[1 1, [a,b,c] |

The successor relation can be programmed according to the following
rule: Situation2 is a successor of Situation1 if there are two stacks, Stackl and

Stack2, in Situation1, and the top block of Stack1 can be moved to Stack2. As
all situations are represented as lists of stacks, this is translated into Prolog as:

s(Stacks, [Stack1, [Top1 | Stack2] | OtherStacks]) :- %Move Topl to Stack2
del([Top1 | Stack1], Stacks, Stacksl), % Find first stack
del(Stack2, Stacks1, OtherStacks). % Find second stack

del(X, [X | L], L).

del(X, [Y | L] [Y|L1]) :-
del(X, L, L1).

The goal condition for our example problem is:

goal(Situation) :-
member([a,b,c], Situation).

We will program search algorithms as a relation
solve(Start, Solution)
where Start is the start node in the state space, and Solution is a path between

Start and any goal node. For our block manipulation problem the correspond-
ing call can be:

?- solve([[c,a,b], [, []], Solution).
As the result of a successful search, Solution is instantiated to a list of block

arrangements. This list represents a plan for transforming the initial state into a
state in which all the three blocks are in one stack arranged as [a,b,c].

BASIC PROBLEM-SOLVING STRATEGIES 251

11.2 Depth-first search strategy

Given a state-space formulation of a problem, there are many approaches to
finding a solution path. Two basic search strategies are: depth-first search and
breadth-first search. In this section we will implement the first of them.

We will start the development of this algorithm and its variations with a
simple idea:

To find a solution path, Sol, from a given node, N, to mm’ie, goal
node: ‘ o L

® if N is a goal node then Sol = {N], or

e if there is a successor node, N1, of N, such that there is a path
Sol1 from N1 to a goal node, then Sol = | N | Soll]. '

This translates into Prolog as:

solve(N, [N]) :-
goal(N).

solve(N, [N1 | Soll]) :-
s(N, N1),
solve(N1, Soll).

This program is in fact an implementation of the depth-first strategy. It is called
‘depth-first’ because of the order in which the alternatives in the state space are
explored. Whenever the depth-first algorithm is given a choice of continuing
the search from several nodes it always decides to choose a deepest one. A
‘deepest’ node is one that is farthest from the start node. Figure 11.4 illustrates

Figure 11.4 A simple state space: a is the start node, f and j are goal nodes. The order
in which the depth-first strategy visits the nodes in this state spaceis: a, b, d, h, e, i,j. The
solution found is: [a,b,e,j]. On backtracking, the other solution is discovered: [a,c,f].

252 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

the order in which the nodes are visited. This order corresponds to tracing the
way that Prolog answers the question:

?- solve(a, Sol).

The depth-first search is most amenable to the recursive style of program-
ming in Prolog. The reason for this is that Prolog itself, when executing goals,
explores alternatives in the depth-first fashion.

The depth-first search is simple and easy to program, and may work well
in certain cases. The eight queens programs of Chapter 4 were, in fact,
examples of depth-first search. A state-space formulation of the eight queens
problem that could be used by the solve procedure above can be as follows:

® nodes are board positions with zero or more queens placed in consecutive
files of the board;

® asuccessor node is obtained by placing another queen into the next file so
that she does not attack any of the existing queens;

the start node is the empty board represented by the empty list;

a goal node is any position with eight queens (the successor rule guaran-
tees that the queens do not attack each other).

Representing the board position as a list of Y-coordinates of the queens, this
can be programmed as:

s(Queens, [Queen | Queens]) :-

member(Queen, [1,2,3,4,5,6,7,8]), % Place Queen into any row
noattack(Queen, Queens).

goal([, _, _, _, _, _, _,]). % Position with 8 queens

The noattack relation requires that Queen does not attack any of the Queens; it
can be easily programmed as in Chapter 4. The question

?- solve([], Solution).

will produce a list of board positions with increasing number of queens. The list
will end with a safe configuration of eight queens. It will also find alternative
solutions through backtracking.

The depth-first search often works well, as in this example, but there are
many ways in which our simple solve procedure can run into trouble. Whether
this will actually happen or not depends on the state space. To embarass our
solve procedure with the problem of Figure 11.4, a slight modification of this
problem is sufficient: add an arc from 4 to d, thus creating a cycle (Figure 11.5).
The search would in this case proceed as follows: start at a and descend to
following the left-most branch of the graph. At this point, in contrast with
Figure 11.4, h has a successor, d. Therefore the execution will not backtrack

Figure11.5 Starting ata, the depth-first search ends in cycling betweendand h: a, b, d,
h,d, h,d....

from h, but proceed to d instead. Then the successor of d, i, will be found, etc.,
resulting in cycling between d and h.

An obvious improvement of our depth-first program is to add a cycle-
detection mechanism. Accordingly, any node that is already in the path from
the start node to the current node should not be considered again. We can
formulate this as a relation

depthfirst(Path, Node, Solution)

As illustrated in Figure 11.6, Node is the state from which a path to a goal state
is to be found; Path is a path (a list of nodes) between the start node and Node;
Solution is Path extended via Node to a goal node.

For the sake of ease of programming, paths will be in our program
represented by lists in the inverse order. The argument Path can be used for two
purposes:

(1) to prevent the algorithm from considering those successors of Node that
have already been encountered (cycle detection);

Figure 11.6 Relation depthfirst(P, N, Solution).

254 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

solve(Node, Solution) :-
depthfirst([], Node, Solution).

depthfirst(Path, Node, [Node | Path]) :-
goal(Node).

depthfirst(Path, Node, Sol) :-
s(Node, Nodel),
not member(Nodel, Path), % Prevent a cycle
depthfirst([Node | Path], Nodel, Sol).

Figure 11.7 A depth-first search program that avoids cycling.

(2) to construct a solution path Solution.

A corresponding depth-first search program is shown in Figure 11.7.

Let us outline a variation of this program. Two arguments of this pro-
cedure; Path and Node, can be combined into a list [Node | Path]. So, instead
of a candidate node Node, which aspires to be on a path to a goal, we have a
candidate path P = [Node | Path], which aspires to be extendable up to a goal
node. The programming of the corresponding predicate

depthfirst1(P, Solution)

is left as an exercise for the reader.

With the cycle-detection mechanism, our depth-first procedure will find
solution paths in state spaces such as that in Figure 11.5. There are, however,
state spaces in which this program will still easily get lost. Many state spaces are
infinite. In such a space, the depth-first algorithm may miss a goal node,
proceeding along an infinite branch of the graph. The program may then
indefinitely explore this infinite part of the space never getting closer to a goal.
The eight queens state space, as defined in this section, may seem to be
susceptible to this kind of trap. However, this space is, incidentally, finite,
because by the limited choice of Y-coordinates eight queens at most can be
placed safely.

To avoid aimless infinite (non-cyclic) branches, we can add another
refinement to the basic depth-first search procedure: limiting the depth of
search. We then have the following arguments for the depth-first search
procedure:

depthfirst2(Node, Solution, Maxdepth)

The search is not allowed to go in depth beyond Maxdepth. This constraint can
be programmed by decreasing the depth limit at each recursive call, and not

BASIC PROBLEM-SOLVING STRATEGIES 255

depthfirst2(Node, [Node],) :-
goal(Node).

depthfirst2(Node, [Node | Sol], Maxdepth) :-
Maxdepth > 0,
s(Node, Nodel),
Max1 is Maxdepth - 1,
depthfirst2(Nodel, Sol, Max1).

Figure 11.8 A depth-limited, depth-first search program.

allowing this limit to become negative. The resulting program is shown in
Figure 11.8.

Exercises

11.1

11.2

11.3

11.4

Write a depth-first search procedure (with cycle detection)
depthfirst1(CandidatePath, Solution)

to find a solution path Solution as an extension of CandidatePath. Let
both paths be represented as lists of nodes in the inverse order, so that the
goal node is the head of Solution.

Write a depth-first procedure that combines both the cycle-detection and

the depth-limiting mechanisms of the procedures in Figures 11.7 and
11.8.

Experiment with the depth-first programs of this section in the blocks
world planning problem of Figure 11.1.
Write a procedure

show(Situation)

to display a problem state, Situation, in the blocks world. Let Situation be
a list of stacks, and a stack in turn a list of blocks. The goal

show([[a], [e,d], [c,b]])

should display the corresponding situation; for example, as:

256 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Figure 11.9 A simple state space: a is the start node, f and j are goal nodes. The order
in which the breadth-first strategy visits the nodes in this state spaceis: a, b, c, d, e, f. The
shorter solution [a,c,f] is found before the longer one [a,b,e,j].

11.3 Breadth-first search strategy

In contrast to the depth-first search strategy, the breadth-first search strategy
chooses to first visit those nodes that are closest to the start node. This results in
a search process that tends to develop more into breadth than into depth, as
illustrated by Figure 11.9.

The breadth-first search is not so easy to program as the depth-first
search. The reason for this difficulty is that we have to maintain a set of
alternative candidate nodes, not just one as in depth-first search. This set of
candidates is the whole growing bottom edge of the search tree. However, even
this set of nodes is not sufficient if we also want to extract a solution path from
the search process. Therefore, instead of maintaining a set of candidate nodes,
we maintain a set of candidate paths. Then,

breadthfirst(Paths, Solution)

is true if some path from a candidate set Paths can be extended to a goal node.
Solution is such an extended path.

11.3.1 Representing the candidate set as a list

In our first implementation of this idea we will use the following representation
for the set of candidate paths. The set will be represented as a list of paths, and
each path will be a list of nodes in the inverse order; that is, the head will be the
most recently generated node, and the last element of the list will be the start
node of the search. The search is initiated with a single element candidate set:

[[StartNode]]

BASIC PROBLEM-SOLVING STRATEGIES 257

An outline for breadth-first search is:

To do the breadth-first search when given a set of candidate paths:

e if the first path contains a goal node as its head then this is a
solution of the problem, otherwise

® remove the first path from the candidate set and genemte the
set of all possible one-step extensions of this path, adding this
set of extensions at the end of the candidate set, and execute
breadth-first search on this updated set.

For our example problem of Figure 11.9, this process develops as follows:

(1) Start with the initial candidate set:
[[a]]

(2) Generate extensions of [a]:
[[b,a], [c,a]]

(Note that all paths are represented in the inverse order.)

(3) Remove the first candidate path, [b,a], from the set and generate exten-
sions of this path:

[[d,b,a], [e,b,a]]
Add the list of extensions to the end of the candidate set:
[[c,al, [d,b,a], [e,b,a]]
(4) Remove [c,a] and add its extensions to the end of the candidate set,
producing:
[[d,b,a], [e,b,a], [f,c,al, [g,c.a]]

In further steps, [d,b,a] and [e,b,a] are extended and the modified candidate set
becomes:

[[f,c,a], [g,c,al, [h,d,b,a], [i,e,b,a], [j,e,b,a]]

Now the search process encounters [f,c,a] which contains a goal node, f.
Therefore this path is returned as a solution.

A program that carries out this process is shown in Figure 11.10. In this
program all one-step extensions are generated by using the built-in procedure
bagof. A test to prevent the generation of cyclic paths is also made. Note that in
the case that no extension is possible, bagof fails and therefore an alternative
call to breadthfirst is provided. member and conc are the list membership and
list concatenation relations respectively.

258 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

solve(Start, Solution) :-
breadthfirst([[Start]], Solution).

breadthfirst([[Node | Path] | _], [Node | Path]) :- :-
goal(Node).

breadthfirst([[N | Path] | Paths], Solution) :-
bagof([M, N | Path],
(s(N, M), not member(M, [N | Path])),
NewPaths), % NewPaths = acyclic extensions of [N | Path]
conc(Paths, NewPaths, Pathsl), !,
breadthfirst(Paths1, Solution);
breadthfirst(Paths, Solution). ¢ Case that N has no successor

Figure 11.10 An implementation of breadth-first search.

A drawback of this program is the inefficiency of the conc operation. This
can be rectified by using the difference-pair representation of lists introduced
in Chapter 8. The set of candidate paths would then be represented by a pair of
lists, Paths and Z, written as:

Paths - Z
Introducing this representation into the program of Figure 11.10, it can be

systematically transformed into the program shown in Figure 11.11. This
transformation is left as an exercise for the reader.

solve(Start, Solution) :-
bfirst([[Start] | Z]-Z, Solution).

bfirst([[Node | Path] | _]-_, [Node | Path]) :-
goal(Node).

bfirst([[N | Path] | Paths]-Z, Solution) :-
bagof([M, N | Path], (s(N, M), not member(M, [N | Path])), New),
conc(New, ZZ, Z), !,
bfirst(Paths-ZZ, Solution);

Paths \== Z, % Set of candidate paths non-empty
bfirst(Paths-Z, Solution).

Figure 11.11 A more efficient program than that of Figure 11.10 for the breadth-first
search. The improvement is based on using the difference-pair representation for the list
of candidate paths.

BASIC PROBLEM-SOLVING STRATEGIES 259

11.3.2 Using tree representation for the candidate set

Let us now consider another modification of our breadth-first program. In our
implementation so far, the set of candidate paths was represented as a list of
paths. This is wasteful because initial parts of the paths are shared among
several paths. Thus these shared parts are stored repeatedly in several paths. A
more compact representation of the set of candidate paths should avoid such
redundancy. Such a more compact representation is a tree in which common
parts of the paths are stored, without duplication, in the upper parts of the tree.
We will use the following representation of such a tree in the program. We have
two cases:

Case 1: The tree only consists of a single node, N; then it is represented by the
term I(N); the functor lis intended to indicate that N is a leaf node in
the tree.

Case 2: The tree consists of a root node, N, and a set of its subtrees S1, S2,
... . Such a tree will be represented by a term

t(N, Subs)
where Subs is a list of subtrees:

Subs = [S1, S2, ...]

As an example, let us consider the situation when three levels of the tree in
Figure 11.9 have been generated. In the list representation, the set of candidate
paths is at this point:

[[d,b,a], [e,b,a], [f,c,a], [g,c,a]]
In the tree representation this set of candidate paths is represented by:

t(a, [tb,[I(d),1e)D), t(c, (1D, 1)

This may appear even more wasteful than the list representation, but this is
only the surface appearance due to the compact Prolog notation for lists.

In the list representation of the candidate set, the breadth-first effect was
achieved by moving the last expanded paths to the end of the candidate list. We
cannot use the same trick with the tree representation, therefore the program
will be somewhat more complicated. The key relation here will be:

expand(Path, Tree, Treel, Solved, Solution)

Figure 11.12 illustrates the relation between the arguments of expand. When-
ever the expand procedure is called, Path and Tree will be already instantiated.
Tree is a subtree of the search tree and represents the set of candidate paths to a
goal in this subtree. Path is the path between the start node and the root of

260 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Tree
Treel

NS

Figure 11.12 Relation expand(Path, Tree, Treel, Solved, Solution): s is the start
node of the search and g is a goal node. Solution is Path extended to g. Treel is Tree
grown by one level downwards.

Tree. The general idea of expand is to produce Treel as a one-level extension of
Tree. If, however, during the expansion of Tree a goal node is encountered,
expand will produce the corresponding solution path.

Thus, expand will produce two kinds of results. The kind of result will be
indicated by the value of Solved as follows:

(1) Solved = yes.
Solution = solution path; that is, Path extended to a goal.
Treel = uninstantiated.

Of course, results of this kind are only produced when there is a goal node
in Tree. In addition, such a goal node has to be a leaf in Tree.

(2) Solved = no. .
Treel = Tree expanded by one level at its bottom edge. Treel does not
contain any ‘dead’ branches in Tree; that is, branches that
cannot be further extended because they have no successor or a
cycle would be created.
Solution = uninstantiated.

If there is no goal node in Tree, and Tree cannot be expanded, then expand
fails.
The top-level, breadth-first procedure

breadthfirst(Tree, Solution)
finds Solution in the candidate set Tree or in its extension. Figure 11.13 shows

the complete program. An auxiliary procedure in this program is expandall
which is similar to expand. It expands a list of trees and collects the resulting

BASIC PROBLEM-SOLVING STRATEGIES 261

% BREADTH-FIRST SEARCH
% Candidate set is represented as a tree

solve(Start, Solution) :-
breadthfirst(1(Start), Solution).

breadthfirst(Tree, Solution) :-
expand([], Tree, Treel, Solved, Solution),
(Solved = yes;
Solved = no, breadthfirst(Treel, Solution)).

eXpand(P9 l(N)a -5 Ye€s, [N | P]) -
goal(N).

expand(P, I(N), t(N, Subs), no, _) :-
bagof(I(M), (s(N,M), not member(M,P)), Subs).

expand(P, t(N, Subs), t(N, Subsl), Solved, Sol) :-
expandall([N | P], Subs, [], Subs1, Solved, Sol).

expandall(_, [], [T | Ts], [T | Ts], no, _). % At least one tree must have grown

expandall(P, [T | Ts], Tsl, Subsi, Solved, Sol) :-
expand(P, T, T1, Solved1, Sol),
(Solved1 = yes, Solved = yes;
Solved1 = no, !,
expandall(P, Ts, [T1 | Ts1], Subsl, Solved, Sol));
expandall(P, Ts, Ts1, Subsl, Solved, Sol).

Figure 11.13 Animplementation of breadth-first search using the tree representation
of the set of candidate paths.

expanded trees, throwing away all ‘dead trees’. It also produces, by backtrack-
ing, all solutions found in this list of trees. There is an additional detail: at least
one of the trees must have grown. If not, then expandall will not succeed in
producing any expanded trees because all trees in the list are ‘dead’.

We have developed this more sophisticated implementation of breadth-
first search not only because it is more economical than our previous version,
but also because this solution is a good start for developing more sophisticated,
heuristically guided search programs, such as best-first search of Chapter 12.

Exercises

11.5 Rewrite the breadth-first program of Figure 11.10 using the difference-
pair representation for the list of candidate paths, and show that the

262 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

result can be the program in Figure 11.11. In Figure 11.11, what is the
purpose of the goal:

Paths \==Z

Test what happens if this goal is omitted on the state space of Figure 11.9.
The difference should only show when trying to find more solutions when
there are none left.

11.6 How can the search programs of this section be used for searching from a
starting set of nodes instead of a single start node?

11.7 How can the search programs of this chapter be used to search in the
backward direction; that is, starting from a goal node and progressing
toward the start node (or a start node in the case of multiple start nodes).
Hint: Redefine the s relation. In what situations would the backward
search be advantageous over the forward search?

11.8 Sometimes it is beneficial to search bidirectionally; that is, to work from
both ends, the start and the goal. The search ends when both ends come
together. Define the search space (relation s) and the goal relation for a
given graph so that our search procedures would in effect perform
bidirectional search.

11.9 Experiment with various search techniques in the blocks world planning
problem.

11.4 Comments on searching graphs, on optimality, and
on search complexity

At this point it is appropriate to make some comments on our search programs
so far: first, on searching graphs; second, on the optimality of solutions
produced; and third, on the complexity of search.

Examples so far might have made the wrong impression that our breadth-
first programs only work for state spaces that are trees and not general graphs.
The fact that the set of candidate paths was in one version represented as a tree
does not mean that the state space itself had to be a tree. When a graph is
searched it, in effect, unfolds into a tree so that some paths are possibly copied
in other parts of the tree. Figure 11.14 illustrates.

Our breadth-first search programs generate solution paths, one after
another, ordered according to their lengths: shortest solutions come first. This
isimportant if optimality (with respect to length) is a concern. The breadth-first
strategy is guaranteed to produce a shortest solution first. This is, of course, not
true for the depth-first strategy.

Our programs do not, however, take into account any costs associated

BASIC PROBLEM-SOLVING STRATEGIES 263

(b) ()

Figure11.14 (a) A state space: ais the start node. (b) The tree of all possible non-cyclic
paths from a, as developed by the breadth-first search program of Figure 11.13.

with the arcs in the state space. If the minimal cost of the solution path is the
optimization criterion (and not its length) then the breadth-first search is not
sufficient. The best-first search of Chapter 12 will aspire to optimize the cost.

Another typical problem associated with searching problem spaces is that
of the combinatorial complexity. For non-trivial problem domains the number
of alternatives to be explored is so high that the problem of complexity often
becomes critical. It is easy to understand why this happens: If each node in the
state space has b successors then the number of paths of length / from the start
node is b’ (we assume no cycles). Thus the set of candidate solution paths grows
exponentially with their length, which leads to what is called the combinatorial
explosion. The depth-first and breadth-first strategies do not do anything
clever against this complexity: they non-selectively treat all candidates as
equally promising.

A more sophisticated search procedure should use some problem-specific
information to decide what is the most promising way to proceed at each stage
of the search. This should have the effect of drawing the search process toward
a goal node, avoiding aimless paths. Problem-specific information that can be
thus used for guiding the search is called heuristic. Algorithms that use heuris-
tics are said to be heuristically guided: they perform heuristic search. The next
chapter presents such a search method.

Summary

State space is a formalism for representing problems.

State space is a directed graph whose nodes correspond to problem
situations and arcs to possible moves. A particular problem is defined by
a start node and a goal condition. A solution of the problem then corre-

sponds to a path in the graph. Thus problem solving is reduced to
searching for a path in a graph.

264 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

® Optimization problems can be modelled by attaching costs to the arcs of a
state space.

® Two basic search strategies that systematically explore a state space are
depth first and breadth first.

® The depth-first search is easiest to program, but is susceptible to cycling.
Two simple methods to prevent cycling are: limit the depth of search; test
for repeated nodes.

® Implementation of the breadth-first strategy is more complicated as it
requires maintaining the set of candidates. This can be most easily
represented as a list of lists, but more economically as a tree.

® The breadth-first search always finds a shortest solution path first, but
this is not the case with the depth-first strategy.

® In the case of large state spaces there is the danger of combinatorial
explosion. Both depth-first and breadth-first strategies are poor tools in
combatting this difficulty. Heuristic guidance is required in such cases.

® Concepts introduced in this chapter are:

state space

start node, goal condition, solution path
search strategy

depth-first search, breadth-first search
heuristic search

References

Depth-first and breadth-first search are basic search strategies described in any
general text on Artificial Intelligence; see, for example, Nilsson (1971, 1980) or
Winston (1984). Kowalski (1980) showed how logic can be used for implement-
ing these principles.

Kowalski, R. (1980) Logic for Problem Solving. Prentice-Hall.

Nilsson, N. J. (1971) Problem Solving Methods in Artificial Intelligence.
McGraw-Hill.

Nilsson, N. J. (1980) Principles of Artificial Intelligence. Tioga; also Springer-
Verlag, 1981.

Winston, P. H. (1984) Arrificial Intelligence (second edition). Addison-
Wesley.

1 2 Best First: A Heuristic
Search Principle

Graph searching in problem solving typically leads to the problem of com-
binatorial complexity due to the proliferation of alternatives. Heuristic search
aspires to fight this problem efficiently.

One way of using heuristic information about a problem is to compute
numerical heuristic estimates for the nodes in the state space. Such an estimate
of a node indicates how promising a node is with respect to reaching a goal
node. The idea is to continue the search always from the most promising node
in the candidate set. The best-first search program of this chapter is based on
this principle.

12.1 Best-first search

A best-first search program can be derived as a refinement of the breadth-first
search program of Figure 11.13. The best-first search also starts at the start
node and maintains the set of candidate paths. The breadth-first search always
chooses for expansion a shortest candidate path (that is, shallowest tip nodes of
the search). The best-first search refines this principle by computing a heuristic
estimate for each candidate and chooses for expansion the best candidate
according to this estimate.

We will from now on assume that a cost function is defined for the arcs of
the state space. So c(n,n’) is the cost of moving from a node # to its successor n’
in the state space.

Let the heuristic estimator be a function f, such that for each node n of the
space, f(n) estimates the ‘difficulty’ of n. Accordingly, the most promising
current candidate node is the one that minimizes f. We will use here a specially
constructed function f which leads to the well-known A* algorithm. f(n) will be
constructed so as to estimate the cost of a best solution path from the start
node, s, to a goal node, under the constraint that this path goes through n. Let
us suppose that there is such a path and that a goal node that minimizes its cost
is t. Then the estimate f(n) can be constructed as the sum of two terms, as
illustrated in Figure 12.1:

f(n) = g(n) + h(n)

265

266 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

g(n)

h(n)

©

Figure 12.1 Construction of a heuristic estimate f(n) of the cost of the cheapest path
from s to t via n: f(n) = g(n) + h(n).

g(n) is an estimate of the cost of an optimal path from s to n; A(n) is an estimate
of the cost of an optimal path from # to z.

When a node 7 is encountered by the search process we have the follow-
ing situation: a path from s to n must have already been found, and its cost can
be computed as the sum of the arc costs on the path. This path is not necessarily
an optimal path from s to n (there may be a better path from s to n not, yet,
found by the search), but its cost can serve as an estimate g(n) of the minimal
cost from s to n. The other term, A(n), is more problematic because the ‘world’
between n and ¢ has not been explored by the search until this point. Therefore,
h(n) is typically a real heuristic guess, based on the algorithm’s general
knowledge about the particular problem. As h depends on the problem domain
there is no universal method for constructing 4. Concrete examples of how such
a heuristic guess can be made will be shown later. But let us assume for now
that a function 4 is given, and concentrate on details of our best-first program.

We can imagine the best-first search to work as follows. The search
process consists of a number of competing subprocesses, each of them explor-
ing its own alternative; that is, exploring its own subtree. Subtrees have
subtrees: these are explored by subprocesses of subprocesses, etc. Among all
these competing processes, only one is active at each time: the one that deals
with the currently most promising alternative; that is, the alternative with the
lowest f-value. The remaining processes have to wait quietly until the current
f-estimates change so that some other alternative becomes more promising.
Then the activity is switched to this alternative. We can imagine this activate—
deactivate mechanism as functioning as follows: the process working on the
currently top-priority alternative is given some budget and the process is active
until this budget is exhausted. During this activity, the process keeps expanding
its subtree and reports a solution if a goal node was encountered. The budget
for this run is defined by the heuristic estimate of the closest competing
alternative.

Figure 12.2 shows an example of such behaviour. Given a map, the task is

BEST FIRST: A HEURISTIC SEARCH PRINCIPLE 267

fle)=2+7=9

. T+4=11

6+4=10 Cc) <g> 9+2=11
9+3=12 dz) V@ 1140=11

Figure 12.2 Finding the shortest route from s to ¢ in a map. (a) The map with links
labelled by their lengths; the numbers in the boxes are straight-line distances to ¢. (b)
The order in which the map is explored by a best-first search. Heuristic estimates are
based on straight-line distances. The dotted line indicates the switching of activity
between alternative paths. The line shows the order in which the nodes are expanded,
not the order in which they are generated.

268 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

to find the shortest route between the start city s and the goal city . In
estimating the cost of the remaining route distance from a city X to the goal we
simply use the straight-line distance denoted by dist(X,?). So:

f(X) = g(X) + h(X) = g(X) + dist(X,1)

In this example, we can imagine the best-first search as consisting of two
processes, each of them exploring one of the two alternative paths: Process 1
the path via a, Process 2 the path via e. In initial stages, Process 1 is more active
because f-values along its path are lower than along the other path. At the
moment that Process 1 is at ¢ and Process 2 still at e, the situation changes:

flc) = g(c) + h(c) =6+ 4 =10
fle) =gle) + he) =2+7=09

So f(e) < f(c), and now Process 2 proceeds to f and Process 1 waits. Here,
however,

fH=7+4=11
flc) =10
fle) < f(f)

Therefore Process 2 is stopped and Process 1 allowed to proceed, but only to d
when f(d) = 12 > 11. Process 2, invoked at this point, now runs smoothly up to
the goal 1.

We will program this behaviour as a refinement of the breadth-first
search program of Figure 11.13. The set of candidate paths will be, again,
represented as a tree. This tree will be represented in the program by terms of
two forms:

(1) 1IN, F/G) represents a single node tree (a leaf); N is a node in the state
space, G is g(N) (cost of the path found from the start node to N); F is
f(N) = G + h(N).

(2) t(N, F/G, Subs) represents a tree with non-empty subtrees; N is the root
of the tree, Subs is a list of its subtrees; G is g(N); F is the updated f-value
of N — that is, the f-value of the most promising successor of N; the list
Subs is ordered according to increasing f-values of the subtrees.

The updating of the f-values is necessary to enable the program to recognize
the most promising subtree at each level of the search tree (that is, the tree that
contains the most promising tip node). This modification of f-estimates leads,
in fact, to a generalization of the definition of f. The generalization extends the
definition of the function f from nodes to trees. For a single node tree (a leaf),
n, we have the original definition:

f(n) = g(n) + h(n)

BEST FIRST: A HEURISTIC SEARCH PRINCIPLE 269

For a tree, T, whose root is n, and n’s successors are m,, m,, etc.,

fT) = mi.n f(m)

1

A best-first program along these lines is shown as Figure 12.3. Some more
explanation of this program follows.

% Best-first search

bestfirst(Start, Solution) :-
biggest(Big), % Big > any f-value
expand([], I(Start, 0/0), Big, _, yes, Solution).

expand(P9 l(N’ —)5 - — Y€S, [N l P]) -
goal(N).

expand(P, I(N, F/G), Bound, Treel, Solved, Sol) :-
F =< Bound,
(bagof(M/C, (s(N,M,C), not member(M,P)), Succ), !,
succlist(G, Succ, Ts),
bestf(Ts, F1),
expand(P, t(N, F1/G,Ts), Bound, Treel, Solved, Sol);

Solved = never). % No successors - dead end
expand(P, t(N, F/G, [T | Ts]), Bound, Treel, Solved, Sol) :-
F =< Bound,

bestf(Ts, BF), min(Bound, BF, Bound1),
expand([N | P], T, Boundl, T1, Solvedl, Sol),
continue(P, t(N, F/G, [T1 | Ts]), Bound, Treel, Solved1, Solved, Sol).

expand(_, t(_, _, []), -, —, never, _) :- !. % A dead tree will never be solved

expand(_, Tree, Bound, Tree, no, _) :-
f(Tree, F), F > Bound. % Cannot grow - bound exceeded

continue(_, _, _, _, yes, yes, Sol).

continue(P, t(N, F/G, [T1 | Ts]), Bound, Treel, Solved1, Solved, Sol) :-
(Solved1 = no, insert(T1, Ts, NTs);
Solvedl = never, NTs = Ts),
bestf(NTs, F1),

expand(P, t(N, F1/G, NTs), Bound, Treel, Solved, Sol).
succlist(_, [], [1)-

succlist(GO, [N/C | NCs], Ts) :-
Gis GO + C,
h(N, H), % Heuristic term h(N)
FisG + H,
succlist(GO, NCs, Ts1),
insert(I(N, F/G), Tsl, Ts).

270 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% Insert T into list of trees Ts preserving order w.r.t. f-values

insert(T, Ts, [T | Ts]) :-
f(T, F), bestf(Ts, F1),
F =< F1, ..

insert(T, [T1 | Ts], [T1 | Ts1]) :-
insert(T, Ts, Tsl).

% Extract f-value

f(I(-, F/_), F). % f-value of a leaf

f(t(-, F_, _), F). % f-value of a tree

bestf([T| -], F) :- % Best f-value of a list of trees
f(T, F).

bestf([], Big) :- % No trees: bad f-value
biggest(Big).

min(X, Y, X) :-
X =< Y,

min(X, Y, Y).

Figure 12.3 A best-first search program.

As in the breadth-first search of Figure 11.13, the key procedure is
expand, which has six arguments this time:

expand(P, Tree, Bound, Treel, Solved, Solution)

It expands a current (sub)tree as long as the f-value of this tree remains less or
equal to Bound. The arguments of expand are:

P Path between the start node and Tree.

Tree Current search (sub)tree.

Bound f-limit for expansion of Tree.

Treel Tree expanded within Bound; consequently, the f-value of Treel is
greater than Bound (unless a goal node has been found during the
expansion).

Solved Indicator whose value is ‘yes’, ‘no’ or ‘never’.
Solution A solution path from the start node ‘through Treel’ to a goal node
within Bound (if such a goal node exists).

P, Tree and Bound are ‘input’ parameters to expand; that is, they are already

BEST FIRST: A HEURISTIC SEARCH PRINCIPLE 271

start node

TN
Treel
~-
Py
f >Bound

Figure 12.4 The expand relation: expanding Tree until the f-value exceeds Bound
results in Treel.

instantiated whenever expand is called. expand produces three kinds of results,
which is indicated by the value of the argument Solved as follows:

(1) Solved = yes.
Solution = a solution path found by expanding Tree within Bound.
Treel = uninstantiated.

(2) Solved = no.
Treel = Tree expanded so that its f-value exceeds Bound (Figure 12.4
illustrates).
Solution = uninstantiated.

(3) Solved = never.
Treel and Solution = uninstantiated.

The last case indicates that Tree is a ‘dead’ alternative and should never be
given another chance by reactivating its exploration. This case arises when the
f-value of Tree is less or equal to Bound, but the tree cannot grow because no
leaf in it has any successor at all, or such a successor would create a cycle.

Some clauses about expand deserve explanation. The clause that deals
with the most complicated case when Tree has subtrees — that is,

Tree = t(N, F/G, [T | Ts])

272 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

says the following. First, the most promising subtree, T, is expanded. This
expansion is not given the bound Bound, but possibly some lower value,
depending on the f-values of the other competing subtrees, Ts. This ensures
that the currently growing subtree is always the most promising subtree. The
expansion process then switches between the subtrees according to their
f-values. After the best candidate has been expanded, an auxiliary procedure
continue decides what to do next; this depends on the type of result produced
by this expansion. If a solution was found then this is returned, otherwise
expansion continues.
The clause that deals with the case

Tree = I(N, F/IG)

generates successor nodes of N together with the costs of the arcs between N
and successor nodes. Procedure succlist makes a list of subtrees from these
successor nodes, also computing their g-values and f-values as shown in Figure
12.5. The resulting tree is then further expanded as far as Bound permits. If, on
the other hand, there were no successors, then this leaf is abandoned for ever
by instantiating Solved = ‘never’.

Other relations are:

s(N, M, C) M s a successor node of N in the state space; C is the cost of
the arc from N to M.

h(N, H) H is a heuristic estimate of the cost of the best path from
node N to a goal node.

biggest(Big) Big is some user-specified value that is known to be greater
than any possible f-value.

Application of this best-first search program to some example problems
will be shown in the next section. But first some general, concluding comments
on this program. It is a variation of a heuristic algorithm known in the literature
as the A* algorithm (see references at the end of the chapter). A* has attracted

g(M)=g(N) +C
f(M) = g(M) + h(M)

Figure 12.5 Relation between the g-value of node N, and the f- and g-values of its
children in the search space.

BEST FIRST: A HEURISTIC SEARCH PRINCIPLE 273

a great deal of attention; we will mention here an important result from the
mathematical analysis of A*:

A search algorithm is said to be admissible if it always pmd)
optimal solution (that is, a minimum-cost path) provided t
solution exists at all. Our implementation, which produces ail miu-
tions through backtrackmg, can be considered admissible if the first
solution found is optimal. Let, for each node # in the state space,
h*(n) denote the cost of an optimal path from # to a goal node. A
theorem about the admissibility of A* says: an A* algorithm that
uses a heuristic function A such that for all nodes nin the state space

hin) ‘5 k‘*(n)

is admissible.

This result is of great practical value. Even if we do not know the exact value of
h* we just have to find a lower bound of 4* and use it as & in A*. This is
sufficient guarantee that A* will produce an optimal solution.

There is a trivial lower bound, namely:

h(n) = 0, for all n in the state space

This indeed guarantees admissibility. The disadvantage of 4 = 0 is, however,
that it has no heuristic power and does not provide any guidance for the search.
A* using h = 0 behaves similarly to the breadth-first search. It in fact reduces to
the breadth-first search in the case that the arc-cost function c¢(n,n’) = 1 for all
arcs (n,n’) in the state space. The lack of heuristic power results in high
complexity. We would therefore like to have A, which is a lower bound of £* (to
ensure admissibility), and which is also as close as possible to #* (to ensure
efficiency). Ideally, if we knew h*, we would use h* itself: A* using A* finds an
optimal solution directly, without any backtracking at all.

Exercise

12.1 Define the problem-specific relations s, goal and h for the route-finding
problem of Figure 12.2. Inspect the behaviour of our best-first search
program on this problem.

12.2 Best-first search applied to the eight puzzle

If we want to apply the best-first search program of Figure 12.3 to some
particular problem we have to add problem-specific relations. These relations
define the particular problem (‘rules of the game’) and also convey heuristic

274 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

information about how to solve that problem. This heuristic information is
supplied in the form of a heuristic function.
Problem-specific predicates are:

s(Node, Nodel, Cost)

This is true if there is an arc, costing Cost, between Node and Nodel in the state
space.

goal(Node)
is true if Node is a goal node in the state space.
h(Node, H)

H s a heuristic estimate of the cost of a cheapest path from Node to a goal node.

In this and the following sections we will define these relations for two
example problem domains: the eight puzzle (described in Section 11.1) and the
task-scheduling problem.

Problem-specific relations for the eight puzzle are shown in Figure 12.6.
A node in the state space is some configuration of the tiles on the board. In the
program, this is represented by a list of the current positions of the tiles. Each
position is specified by a pair of coordinates: X/Y. The order of items in the list
is as follows:

(1) the current position of the empty square,
(2) the current position of tile 1,
(3) the current position of tile 2,

The goal situation (see Figure 11.3) is defined by the clause:
goal([2/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,1/2]).

An auxiliary relation is:
d(81, S2, D)

D is the ‘Manhattan distance’ between squares S1 and S2; that is, the distance
between S1 and S2 in the horizontal direction plus the distance between S1 and
S2 in the vertical direction.

We want to minimize the length of solutions. Therefore, we define the
cost of all the arcs in the state space to equal 1. In the program of Figure 12.6,
three example starting positions from Figure 12.7 are also defined.

BEST FIRST: A HEURISTIC SEARCH PRINCIPLE 275

/* Problem-specific procedures for the eight puzzle

Current situation is represented as a list of positions of the tiles, with first item in the list
corresponding to the empty square.

Example:
This position is represented by:
11123
28 4 (212,173,213, 3/3, 3/2, 3/1, 21, 1/1]
31765
123

‘Empty’ can move to any of its neighbours which means that ‘empty’ and its neighbour
interchange their positions.

*/
s([Empty | L], [T | L1}, 1) :- % All arc costs are 1

swap(Empty, T, L, L1). % Swap Empty and T in L giving L1
swap(E, T, [T | L], [E|L]) :-

d(E, T, 1).

swap(E, T, [T1 | L], [T1|L1]) :-
swap(E, T, L, L1).

d(X/Y, X1/Y1, D) :- % D is Manh. dist. between two squares
dif(X, X1, Dx),
dif(Y, Y1, Dy),
D is Dx + Dy.

dif(A, B, D) :-
DisA-B,D>=0, !;
D is B-A.

% Heuristic estimate h is the sum of distances of each tile
% from its ‘home’ square plus 3 times ‘sequence’ score

h([Empty | L], H) :-
goal([Emptyl | G]),,
totdist(L, G, D),
seq(L, S),

His D + 3*S,

totdist([], [], 0).

totdist([T | L], [T1 | L1], D) :-
d(T, T1, D1),
totdist(L, L1, D2),
Dis D1 + D2.

seq([First | L], S) :-
seq([First | L], First, S).

276 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

seq([T1, T2 | L], First, S) :-
score(T1, T2, S1),
seq([T2 | L], First, S2),
Sis S1 + S2.

seq([Last], First, S) :-
score(Last, First, S).

score(2/2, _, 1) :- ! % Tile in centre scores 1

score(1/3, 2/3, 0) :-
score(2/3, 3/3, 0) :-
score(3/3, 3/2, 0) :-
score(3/2, 3/1, 0) :-
score(3/1, 2/1, 0) :-
score(2/1, 1/1, 0) :-
score(1/1, 1/2, 0) :-
score(1/2, 1/3, 0) :-

score(-, —, 2). % Tiles out of sequence

% Proper successor scores 0

e sw o cwm s tm em sem
.

goal([2/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,1/2]).

% Starting positions for some puzzles

start1([2/2,1/3,3/2,2/3,3/3,3/1,2/1,1/1,1/2]). % Requires 4 steps
start2([2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3]). % 5 steps
start3([2/2,2/3,1/3,3/1,1/2,2/1,3/3,1/1,3/2]). % 18 steps

% Display a solution path as a list of board positions
showsol([]).

showsol([P | L]) :-
showsol(L),
nl, write(’>---"),
showpos(P).

% Display a board position

showpos([S0,51,S2,S3,54,S5,56,57,S8]) :-
member(Y, [3,2,1]), % Order of Y-coordinates
nl, member(X, [1,2,3]), % Order of X-coordinates
member(Tile-X/Y, [’ ’-S0,1-S1,2-S2,3-S3,4-S4,5-S5,6-56,7-S7,8-S8]),
write(Tile),
fail. % Backtrack to next square

showpos(_).

Figure 12.6 Problem-specific procedures for the eight puzzle, to be used in best-first
search of Figure 12.3.

BEST FIRST: A HEURISTIC SEARCH PRINCIPLE 277

1{3]4 2|83 1|6
8 2 1]6]4

6|5 7 5 705
(@) (®) ©

Figure 12.7 Three starting positions for the eight puzzle: (a) requires four steps; (b)
requires five steps; (c) requires 18 steps.

The heuristic function, A, is programmed as:
h(Pos, H)
Pos is a board position; H is a combination of two measures:

(1) totdist: the ‘total distance’ of the eight tiles in Pos from their ‘home
squares’. For example, in the starting position of the puzzle in Figure
12.7(a), totdist = 4.

(2) seq: the ‘sequence score’ that measures the degree to which the tiles are
already ordered in the current position with respect to the order required
in the goal configuration. seq is computed as the sum of scores for each
tile according to the following rules:

® a3 tile in the centre scores 1;

® atile on a non-central square scores 0 if the tile is, in the clockwise
direction, followed by its proper successor;

® such a tile scores 2 if it is not followed by its proper successor.

For example, for the starting position of the puzzle in Figure 12.7(a),
seq = 6.

The heuristic estimate, H, is computed as:
H = totdist + 3 * seq

This heuristic function works well in the sense that it very efficiently directs the
search toward the goal. For example, when solving the puzzles of Figure
12.7(a) and (b), no node outside the shortest solution path is ever expanded
before the first solution is found. This means that the shortest solutions are
found directly in these cases without any backtracking. Even the difficult
puzzle of Figure 12.7(c) is solved almost directly. A drawback of this heuristic
is, however, that it is not admissible: it does not guarantee that the shortest
solution path will always be found before any longer solution. The A function
used does not satisfy the admissibility condition: & < A* for all the nodes. For
example, for the initial position in Figure 12.7(a),

=4+3%6=22, h* =4

278 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

On the other hand, the ‘total distance’ measure itself is admissible: for all
positions

totdist < h*

This relation can be easily proved by the following argument: if we relaxed the
problem by allowing the tiles to climb on top of each other, then each tile could
travel to its home square along a trajectory whose length is exactly the Manhat-
tan distance between the tile’s initial square and its home square. So the
optimal solution in the relaxed puzzle would be exactly of length totdist. In the
original problem, however, there is interaction between the tiles and they are
in each other’s way. This can prevent the tiles from moving along the shortest
trajectories, which ensues our optimal solution’s length be equal or greater
than totdist.

Exercise

12.2 Modify the best-first search program of Figure 12.3 to count the number
of nodes generated in the search. One easy way is to keep the current
number of nodes asserted as a fact, and update it by retract and assert
whenever new nodes are generated. Experiment with various heuristic
functions for the eight puzzle with respect to their heuristic power, which
is reflected in the number of nodes generated.

12.3 Best-first search applied to scheduling

Let us consider the following task-scheduling problem. We are given a collec-
tion of tasks, t,, t,, ..., with their execution times D,, D,, ... respectively. The
tasks are to be executed on a set of m identical processors. Any task can be
executed on any processor, but each processor can only execute one task at a
time. There is a precedence relation between tasks which tells what tasks, if
any, have to be completed before some other task can be started. The schedul-
ing problem is to assign tasks to processors so that the precedence relation is
not violated and that all the tasks together are processed in the shortest
possible time. The time that the last task in a schedule is completed is called the
finishing time of the schedule. We want to minimize the finishing time over all
permissible schedules.

Figure 12.8 shows such a task-scheduling problem and two permissible
schedules, one of which is optimal. This example shows an interesting property
of optimal schedules; namely, that they may include ‘idle time’ for processors.
In the optimal schedule of Figure 12.8, processor 1 after having executed task 7,
waits for two time units although it could start executing task t,.

One way to construct a schedule is roughly as follows. We start with the

BEST FIRST: A HEURISTIC SEARCH PRINCIPLE 279

414 /2 /2
t4/20 t5120 te/ 11 /11
Time
_—
2 4
5 1| 6 4]
g 2] n s
&3 f
2 4 13
‘é 1 13 ls h
0(2 21 & ldle ts
3 S K
A~ 3 h ty

Figure 12.8 A task-scheduling problem with seven tasks and three processors. The top
part of the diagram shows the task precedence relation and the duration of the tasks.
Task s, for example, requires 20 time units, and its execution can only start after three
other tasks, f,, 1, and £, have been completed. Two permissible schedules are shown; an
optimal one with the finishing time 24, and a suboptimal one with the finishing time 33.
In this problem any optimal schedule has to include idle time. Coffman/Denning,
Operating Systems Theory, © 1973, p. 86. Adapted by permission of Prentice-Hall,
Englewood Cliffs, New Jersey.

empty schedule (with void time slots for each processor) and gradually insert
tasks one by one into the schedule until all the tasks have been inserted.
Usually there are alternatives at any such insertion step because there are
several candidate tasks waiting to be processed. Therefore, the scheduling
problem is one of search. Accordingly, we can formulate the scheduling
problem as a state-space search problem as follows:

states are partial schedules;

a successor state of some partial schedule is obtained by adding a not yet
scheduled task to this schedule; another possibility is to leave a processor
that has completed its current task idle;

the start state is the empty schedule;
any schedule that includes all the tasks in the problem is a goal state;

e the cost of a solution (which is to be minimized) is the finishing time of a
goal schedule;

280 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

® accordingly, the cost of a transition between two (partial) schedules
whose finishing times are F, and F, respectively is the difference F, - F,.

Some refinements are needed to this rough scenario. First, we decide to fill the
schedule according to increasing times so that tasks are inserted into the
schedule from left to right. Also, each time a task is added, the precedence
constraint has to be checked. Further, there is no point in leaving a processor
idle indefinitely if there are still some candidate tasks waiting. So we decide to
leave a processor idle only until some other processor finishes its current task,
and then consider again assigning a task to it.

Now let us decide on the representation of problem situations ~ that is,
partial schedules. We need the following information:

(1) list of waiting tasks and their execution times,
(2) current engagements of the processors;

We will also add for convenience:

(3) the finishing time of the (partial) schedule; that is, the latest end-time of
the current engagements of the processors.

The list of waiting tasks and their execution times will be represented in the
program as a list of the form:

[Task1/D1, Task2/D2, ...]

The current engagements of the processors will be represented by a list of tasks
currently being processed; that is, pairs of the form:

Task/FinishingTime
There are m such pairs in the list, one for each processor. We will always add a
new task to a schedule at the moment that the first current execution is
completed. To this end, the list of current engagements will be kept ordered
according to increasing finishing times. The three components of a partial

schedule (waiting tasks, current engagements and finishing time) will be com-
bined in the program into a single expression of the form:

WaitingList * ActiveTasks * FinishingTime

In addition to this information we have the precedence constraint which will be
specified in the program as a relation

prec(TaskX, TaskY)

Now let us consider a heuristic estimate. We will use a rather straightfor-

BEST FIRST: A HEURISTIC SEARCH PRINCIPLE 281

ward heuristic function, which will not provide a very efficient guidance to the
search algorithm. The function will be admissible and will hence guarantee an
optimal schedule. It should be noted, however, that a much more powerful
heuristic would be needed for large scheduling problems.

Our heuristic function will be an optimistic estimate of the finishing time
of a partial schedule completed with all currently waiting tasks. This optimistic
estimate will be computed under the assumption that two constraints on the
actual schedule be relaxed:

(1) remove the precedence constraint;

(2) allow (unrealistically) that a task can be executed in a distributed fashion
on several processors, and that the sum of the execution times of this task
over all these processors is equal to the originally specified execution time
of this task on a single processor.

Let the execution times of the currently waiting tasks be D,, D,, ..., and the
finishing times of the current processors engagements be F,, F,, Such an
optimistically estimated finishing time, Finall, to complete all the currently
active and all the waiting tasks, is:

Finall = (Y D; + ¥ F;)im
i J

where m is the number of processors. Let the finishing time of the current
partial schedule be:

Fin = max(F)
J

Then the heuristic estimate H (an extra time needed to complete the partial
schedule with the waiting tasks) is:

if Finall > Fin then H = Finall - Fin else H = 0

A complete program that defines the state-space relations for task
scheduling as outlined above is shown in Figure 12.9. The figure also includes a
specification of the particular scheduling problem of Figure 12.8. These defini-
tions can now be used by the best-first search program of Figure 12.3. One of
the optimal solutions produced by best-first search in the thus specified prob-
lem space is an optimal schedule of Figure 12.8.

Project

In general, scheduling problems are known to be combinatorially difficult. Our
simple heuristic function does not provide very powerful guidance. Propose
other functions and experiment with them.

282 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

/* Problem-specific relations for task scheduling
Nodes in the state space are partial schedules specified by:

[Task1/D1, Task2/D2, ...] * [Task1/F1, Task2/F2, ...] * FinTime

The first list specifies the waiting tasks and their durations; the second list specifies
the currently executed tasks and their finishing times, ordered so that F1 < F2, F2 =
F3FinTime is the latest completion time of current engagements of the
Processors.

*/

s(Tasks1 * [_/F | Activel] * Finl, Tasks2 * Active2 * Fin2, Cost) :-
del(Task/D, Tasks1, Tasks2), % Pick a waiting task
not (member(T/_, Tasks2), before(T, Task)), % Check precedence
not (member(T1/F1, Activel), F < F1, before(T1, Task)), % Active tasks too
Time is F + D, % Finishing time of activated task

insert(Task/Time, Activel, Active2, Finl, Fin2),
Cost is Fin2 - Fin1.
s(Tasks * [_/F | Activel] * Fin, Tasks * Active2 * Fin, 0) :-
insertidle(F, Activel, Active2). % Leave processor idle
before(T1, T2) :- % Task T1 before T2 according to precedence
prec(T1, T2).
before(T1, T2) :-
prec(T, T2),
before(T1, T).

insert(S/A, [T/B | L], [S/A, T/B | L], F, F) :- % Task lists are ordered
A =<B, .

insert(S/A, [T/B | L], [T/B | L1], F1, F2) :-
insert(S/A, L, L1, F1, F2).

insert(S/A, [], [S/A], -, A).

insertidle(A, [T/B | L], [idle/B, T/B | L]) :- % Leave processor idle
A<B,!. % until first greater
% finishing time
insertidle(A, [T/B | L], [T/B | L1}) :-
insertidle(A, L, L1).
del(A, [A | L], L). % Delete item from list

del(A, [B | L], [B|L1]) :-
del(A, L, L1).

goal([J*_*.). % Goal state: no task waiting

BEST FIRST: A HEURISTIC SEARCH PRINCIPLE 283

% Heuristic estimate of a partial schedule is based on an
% optimistic estimate of the final finishing time of this
% partial schedule extended by all the remaining waiting tasks.

h(Tasks * Processors * Fin, H) :-
totaltime(Tasks, Tottime), % Total duration of waiting tasks
sumnum(Processors, Ftime, N), % Ftime is sum of finishing times

. % of processors, N is their number
Finall is (Tottime + Ftime)/N,
(Finall > Fin, !, H is Finall — Fin; H = 0).

totaltime([], 0).

totaltime([_/D | Tasks], T) :-
totaltime(Tasks, T1),
Tis T1 + D.

sumnum([], 0, 0).
sumnum([_/T | Procs], FT, N) :-
sumnum(Procs, FT1, N1),
NisN1 + 1,
FTis FT1 + T.
% A task-precedence graph
prec(t1, t4). prec(t1, t5). prec(t2, t4). prec(t2, t5).
prec(t3, t5). prec(t3, t6). prec(t3, t7).
% A start node
start([t1/4, t2/2, t3/2, t4/20, t5/20, t6/11, t7/11] * [idle/0, idle/0, idle/0] * 0).

Figure 12.9 Problem-specific relations for the task-scheduling problem. The particu-
lar scheduling problem of Figure 12.8 is also defined by its precedence graph and an
initial (empty) schedule as a start node for search.

Summary

e Heuristic information can be used to estimate how far a node is from a
nearest goal node in the state space. This chapter considered numerical
heuristic estimates. : ,

® The best-first heuristic principle guides the search process so as to always
expand the node that is currently the most promising, according to the
heuristic estimates.

284 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

® The search algorithm, known as A*, that uses this principle, was
programmed in this chapter.

® To use A* for solving a concrete problem, a state space and a heuristic
function have to be defined to be used by A*. For complex problems, the
difficult part is to find a good heuristic function.

® The admissibility theorem helps to establish whether A*, using a particu-
lar heuristic function, will always find an optimal solution.

References

The best-first search program of this chapter is a variation of many similar
algorithms of which A* is the most popular. General descriptions of A* can be
found in Nilsson (1971, 1980) or Winston (1984). The admissibility theorem
was discovered by Hart, Nilsson and Raphael (1968). An excellent and
rigorous treatment of many variations of best-first search algorithms and
related mathematical results is provided by Pearl (1984).

The eight puzzle was used in Artificial Intelligence as a test problem for
studying heuristic principles by several researchers — for example, Doran and
Michie (1966), Michie and Ross (1970), and Gaschnig (1979).

Our task-scheduling problem and its variations arise in numerous appli-
cations in which servicing of requests for resources is to be planned. An
example is computer operating systems. Task-scheduling problems with
reference to this application are treated by Coffman and Denning (1973).

Finding good heuristics is important and difficult, therefore the study of
heuristics is one of the central themes of Artificial Intelligence. There are,
however, also some limitations on how far we can get in the refinement of
heuristics. It may appear that to solve any combinatorial problem efficiently we
only have to find a powerful heuristic. However, there are problems (including
many scheduling problems) for which no general heuristic exists that would
guarantee both efficiency and admissibility in all cases. Many theoretical
results that pertain to this limitation issue are collected in Garey and Johnson
(1979).

Coffman, E. G. and Denning, P. J. (1973) Operating Systems Theory. Prentice-
Hall.

Doran, J. and Michie, D. (1966) Experiments with the graph traverser pro-
gram. Proc. Royal Society of London 294(A): 235-259.

Garey, M. R. and Johnson, D. S. (1979) Computers and Intractability. W. H.
Freeman.

Gaschnig, J. (1979) Performance measurement and analysis of certain search
algorithms. Carnegie-Mellon University: Computer Science Department.
Technical Report CMU-CS-79-124 (Ph.D.Thesis).

BEST FIRST: A HEURISTIC SEARCH PRINCIPLE 285

Hart, P. E., Nilsson, N. J. and Raphael, B. (1968) A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Sciences and Cybernetics SSC-4(2): 106-107.

Michie, D. and Ross, R. (1970) Experiments with the adaptive graph traverser.
Machine Intelligence 5: 301-308.

Nilsson, N. J. (1971) Probleni Solving Methods in Artificial Intelligence.
McGraw-Hill.

Nilsson, N. J. (1980) Principles of Artificial Intelligence. Tioga; also Springer-
Verlag.

Pearl, J. (1984) Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley.

Winston, P. H. (1984) Artificial Intelligence (second edition). Addison-
Wesley.

Problem Reduction
1 3 and AND/OR Graphs

AND/OR graphs are a suitable representation for problems that can be
naturally decomposed into mutually independent subproblems. Examples of
such problems include route finding, symbolic integration, game playing,
theorem proving, etc. In this chapter we will develop programs for searching
AND/OR graphs, including a heuristically guided best-first AND/OR search.
|

13.1 AND/OR graph representation of problems

In Chapters 11 and 12, problem solving was centred around the state-space
representation of problems. Accordingly, problem solving was reduced to
finding a path in a state-space graph. Another representation, the AND/OR
graph representation, more naturally suits certain categories of problems. This
representation relies on the decomposition of problems into subproblems.

Figure 13.1 Finding a route from a to z in a road map. The river has to be crossed at for
8- An AND/OR representation of this problem is shown in Figure 13.2.

286

PROBLEM REDUCTION AND AND/OR GRAPHS 287

Decomposition into subproblems is advantageous if the subproblems are
mutually independent, and can therefore be solved independently of each
other.

Let us illustrate this with an example. Consider the problem of finding a
route in a road map between two given cities, as shown in Figure 13.1. We will
disregard path lengths for the moment. The problem could, of course, be
formulated as path finding in a state space. The corresponding state space
would look just like the map: the nodes in the state space correspond to cities,
the arcs correspond to direct connections between cities, arc costs correspond
to distances between cities. However, let us construct another representation
of this problem, based on a natural decomposition of the problem.

In the map of Figure 13.1, there is also a river. Let us assume that there
are only two bridges at which the river can be crossed, one bridge at city f and
the other at city g. Obviously, our route will have to include one of the bridges;
so it will have to go through f or through g. We have, then, two major
alternatives:

To find a path between a and z, find either
(1) a path froma to z via f, or
(2) apath fromato zviag.

Each of these two alternative problems can now be decomposed as follows:

(1) To find a path from a to z via f:
1.1 find a path from a to f, and
1.2 find a path from f to z.

(2) To find a path from a to z via g:
2.1 find a path from a to g, and
2.2 find a path from g to z.

To summarize, we have two main alternatives for solving the original problem:
(1) via for (2) via g. Further, each of these alternatives can be decomposed into
two subproblems (1.1 and 1.2, or 2.1 and 2.2 respectively). What is important
here is that (in both alternatives) each of the subproblems can be solved
independently of the other. Such a decomposition can be pictured as an
ANDI/OR graph (Figure 13.2). Notice the curved arcs which indicate the AND
relationship between subproblems. Of course, the graph in Figure 13.2 is only
the top part of a corresponding AND/OR tree. Further decomposition of
subproblems could be based on the introduction of additional intermediate
cities.

What are goal nodes in such an AND/OR graph? Goal nodes correspond
to subproblems that are trivial or ‘primitive’. In our example, such a
subproblem would be ‘find a route from a to ¢’, for there is a direct connection
between cities a and c in the road map.

288 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

find path
a-z

a-zviag

Figure 13.2 An AND/OR representation of the route-finding problem of Figure 13.1.
Nodes correspond to problems or subproblems, and curved arcs indicate that all (both)
subproblems have to be solved.

Some important concepts have been introduced in this example. An
AND/OR graph is a directed graph in which nodes correspond to problems,
and arcs indicate relations between problems. There are also relations among
arcs themselves. These relations are AND and OR, depending on whether we
have to solve just one of the successor problems or several (see Figure 13.3). In
principle, a node can issue both AND-related arcs and OR-related arcs. We
will, however, assume that each node has either only AND successors or only
OR successors. Each AND/OR graph can be transformed into this form by
introducing auxiliary OR nodes if necessary. Then, a node that only issues
AND arcs is called an AND node; a node that only issues OR arcs is called an
OR node.

In the state-space representation, a solution to the problem was a path in
the state space. What is a solution in the AND/OR representation? A solution,
of course, has to include all the subproblems of an AND node. Therefore, a

(@ e (b) ?‘

Figure 13.3 (a) To Solve P solve any of P, or P, or... . (b) To solve Q solve all Q, and
0,... .

PROBLEM REDUCTION AND AND/OR GRAPHS 289

solution is not a path any more, but it is a tree. Such a solution tree, T, is
defined as follows:

the original problem, P, is the root node of T;

if P is an OR node then exactly one of its successors (in the AND/OR
graph), together with its own solution tree, is in T;

e if Pis an AND node then all of its successors (in the AND/OR graph),
together with their solution trees, are in T.

| Figure 13.4 illustrates this definition. In this figure, there are costs attached to
arcs. Using costs we can formulate an optimization criterion. We can, for
example, define the cost of a solution graph as the sum of all the arc costs in the
graph. As we are normally interested in the minimum cost, the solution graph
in Figure 13.4(c) will be preferred.

Figure 13.4 (a) An AND/OR graph: d, g and h are goal nodes; a is the problem to be
solved. (b) and (c) Two solution trees whose costs are 9 and 8 respectively. The cost of a
solution tree is here defined as the sum of all the arc costs in the solution tree.

290

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

But we do not have to base our optimization measure on the costs of arcs.

Sometimes it is more natural to associate costs with nodes rather than arcs, or
with both arcs and nodes.

To summarize:

AND/OR representation is based on the philosophy of reducing a prob-
lem to subproblems.

Nodes in an AND/OR graph correspond to problems; links between
nodes indicate relations between problems.

A node that issues OR links is an OR node. To solve an OR node, one of
its successor nodes has to be solved.

A node that issues AND links is an AND node. To solve an AND node,
all of its successors have to be solved.

For a given AND/OR graph, a particular problem is specified by two
things:

a start node, and
a goal condition for recognizing goal nodes.

Goal nodes (or ‘terminal’ nodes) correspond to trivial (or ‘primitive’)
problems.

A solution is represented by a solution graph, a subgraph of the AND/OR
graph.

The state-space representation can be viewed as a special case of the
AND/OR representation in which all the nodes are OR nodes.

To benefit from the AND/OR representation, AND-related nodes
should represent subproblems that can be solved independently of each
other. The independency criterion can be somewhat relaxed, as follows:
there must exist an ordering of AND subproblems so that solutions of
subproblems that come earlier in this ordering are not destroyed when
solving later subproblems.

Costs can be attached to arcs or nodes or both in order to formulate an
optimization criterion.

13.2 Examples of AND/OR representation

13.2.1 AND/OR representation of route finding

For the shortest route problem of Figure 13.1, an AND/OR graph including a
cost function can be defined as follows:

OR nodes are of the form X-Z, meaning: find a shortest path from X to Z.

PROBLEM REDUCTION AND AND/OR GRAPHS 291

AND nodes are of the form

X-ZviaY
meaning: find a shortest path from X to Z under the constraint that the
path goes through Y.

A node X-Z is a goal node (primitive problem) if X and Z are directly
connected in the map.

The cost of each goal node X-Z is the given road distance between X and
Z.

The costs of all other (non-terminal) nodes are 0.

The cost of a solution graph is the sum of the costs of all the nodes in the
solution graph (in our case, this is just the sum over the terminal nodes). For
the problem of Figure 13.1, the start node is a-z. Figure 13.5 shows a solution
tree of cost 9. This tree corresponds to the path [a,b,d,f,i,z]. This path can be

Figure 13.5 The cheapest solution tree for the route problem of Figure 13.1 formu-
lated as an AND/OR graph.

292 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

reconstructed from the solution tree by visiting all the leaves in this tree in the
left-to-right order.

13.2.2 The Tower of Hanoi problem

The Tower of Hanoi problem, shown in Figure 13.6, is another, classical
example of effective application of the AND/OR decomposition scheme. For
simplicity, we will consider a simple version of this problem, containing three
disks only:

There are three pegs, 1, 2 and 3, and three disks, a, b and ¢ (a being
the smallest and ¢ being the biggest). Initially, all the disks are
stacked on peg 1. The problem is to transfer them all on to peg 3.
Only one disk can be moved at a time, and no disk can ever be
placed on top of a smaller disk.

This problem can be viewed as the problem of achieving the following set
of goals:

(1) Disk a on peg 3.
(2) Disk b on peg 3.
(3) Disk c on peg 3.

These goals are, unfortunately, not independent. For example, disk a can
immediately be placed on peg 3, satisfying the first goal. This will, however,
prevent the fulfilment of the other two goals (unless we undo the first goal
again). Fortunately, there is a convenient ordering of these goals so that a
solution can easily be derived from this ordering. The ordering can be found by
the following reasoning: goal 3 (disk c on peg 3) is the hardest because moving
disk c is subject to most constraints. A good idea that often works in such
situations is: try to achieve the hardest goal first. The logic behind this principle
is: as other goals are easier (not as constrained as the hardest) they can
hopefully be achieved without the necessity of undoing this hardest goal.

The problem-solving strategy that results from this principle in our task
is:

First satisfy the goal ‘disk ¢ on peg 3’,
then satisfy the remaining goals.

= = -
1 2 3 1 2 3

Figure 13.6 The Tower of Hanoi problem.

PROBLEM REDUCTION AND AND/OR GRAPHS 293

But the first goal cannot immediately be achieved: disk ¢ cannot move in
the initial situation. Therefore, we first have to prepare this move and our
strategy is refined to:

(1) Enable moving disk ¢ from 1 to 3.
(2) Move disk ¢ from 1 to 3.
(3) Achieve remaining goals: a on 3, and b on 3.

Disk ¢ can only move from 1 to 3 if both a and b are stacked on peg 2. Then, our
initial problem of moving a, b and ¢ from peg 1 to peg 3 is reduced to three
subproblems:

To move a, b and ¢ from 1 to 3:
(1) move a and b from 1 to 2, and
(2) move c from 1 to 3, and

(3) move a and b from 2 to 3.

Problem 2 is trivial (one-step solution). The other two subproblems can be
solved independently of problem 2 because disks a and b can be moved
regardless of the position of disk c¢. To solve problems 1 and 3, the same
decomposition principle can be applied (disk b is the hardest this time).
Accordingly, problem 1 is reduced to three trivial subproblems:

To move a and b from 1 to 2:
(1) move a from 1 to 3, and
(2) move b from 1 to 2, and
(3) move a from 3 to 2.

13.2.3 AND/OR formulation of game-playing

Games like chess and checkers can naturally be viewed as problems, repre-
sented by AND/OR graphs. Such games are called two-person, perfect-
information games, and we will assume here that there are only two possible
outcomes: WIN or LOSS. (We can think of games with three outcomes — WIN,
LOSS and DRA W —as also having just two outcomes: WIN and NO-WIN.) As
the two players move in turn we have two kinds of positions, depending on who
is to move. Let us call the two players ‘us’ and ‘them’, so the two kinds of
positions are: ‘us-to-move’ positions and ‘them-to-move’ positions. Assume
that the game starts in an us-to-move position P. Each alternative us-move in
this position leads to one of them-to-move positions Q,, Q,, ... (Figure 13.7).
Further, each alternative them-move in Q, leads to one of the positions R,,,
R,,, In the AND/OR tree of Figure 13.7, nodes correspond to positions,
and arcs correspond to possible moves. Us-to-move levels alternate with them-
to-move levels. To win in the initial position, P, we have to find a move from P

294 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

us-to-move position

them-to-move positions

us-to-move

© 00000 0000000000000000000600000000000000000000000CL

Figure 13.7 An AND/OR formulation of a two-person game; the players are ‘us’ and
‘them’.

to Q,, for some i, so that the position Q, is won. Thus, Pis wonif O, or Q, or ...
is won. Therefore position P is an OR node. For all i, position Q, is a them-
to-move position, so if it is to be won for us it has to be won after each them-
move. Thus Q, is won if all R, and R, and ... are won. Accordingly, all them-
to-move positions are AND nodes. Goal nodes are those positions that are won
by the rules of the game; for example, their king checkmated in chess. Those
positions that are lost by the rules of the game correspond to unsolvable
problems. To solve the game we have to find a solution tree that guarantees our
victory regardless of the opponent’s replies. Such a solution tree, then, is a
complete strategy for winning the game: for each possible continuation that can
be chosen by the opponent, there is a move in such a strategy tree that forces a
win.

13.3 Basic AND/OR search procedures

In this section we will only be interested in finding some solution of the
problem, regardless of its cost. So for the purposes of this section we can ignore
the costs of links or nodes in an AND/OR graph.

The simplest way of searching AND/OR graphs in Prolog is to use
Prolog’s own search mechanism. This happens to be trivial as Prolog’s pro-
cedural meaning itself is nothing but a procedure for searching AND/OR
graphs. For example, the AND/OR graph of Figure 13.4 (ignoring the arc
costs) can be specified by the following clauses:

a :- b. % a is an OR node with two successors, b and ¢
a :- C

b :- d,e. % b is an AND node with two successors, d and e

PROBLEM REDUCTION AND AND/OR GRAPHS 295

e - h.

c - f, g

f :- h,i.

d. g h. % d, g and h are goal nodes

To ask whether problem a can be solved we can simply ask:

?- a.

Now Prolog will effectively search the tree of Figure 13.4 in the depth-first
fashion and answer ‘yes’, after having visited that part of the search graph
corresponding to the solution tree in Figure 13.4(b).

The advantage of this approach to programming AND/OR search is its
simplicity. There are disadvantages, however:

® We only get an answer ‘yes’ or ‘no’, not a solution tree as well. We could
reconstruct the solution tree from the program’s trace, but this can be
awkward and insufficient if we want a solution tree explicitly accessible as
an object in the program.

This program is hard to extend so as to be able to handle costs as well.

If our AND/OR graph were a general graph, containing cycles, then
Prolog with its depth-first strategy could enter an indefinite recursive
loop.

Let us rectify these deficiencies gradually. We will first define our own depth-
first search procedure for AND/OR graphs.

To begin with, we have to change the representation of AND/OR graphs
in the program. For that we will introduce a binary relation represented in the
infix notation with the operator ‘--->’. For example, node a linked to its two
OR successors will be represented by the clause:

a ---> or : [b,c].
The symbols ‘--->’ and :” are both infix operators that can be defined by:

- op(600, xfx, --->).
- op(500, xfx, :).

The complete AND/OR graph of Figure 13.4 is thus specified by the clauses:

---> or : [b,c].
---> and : [d,e].
---> and : [f,g].
---> or : [h].

o 0o

296 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE
f ---> or: [h,i].
goal(d). goal(g). goal(h).

The depth-first AND/OR procedure can be constructed from the follow-
ing principles:

(3) If N has AND successors
 problem cannot be solve

A corresponding program can be as follows:

solve(Node) :-
goal(Node).

solve(Node) :-
Node ---> or : Nodes, % Node is an OR node
member(Nodel, Nodes), % Select a successor Nodel of Node
solve(Nodel).
solve(Node) :-
Node ---> and : Nodes, % Node is an AND node
solveall(Nodes). % Solve all Node’s successors

solveall([]).

solveall([Node | Nodes]) :-
solve(Node),
solveall(Nodes).

member is the usual list membership relation.
This program still has the following disadvantages:

it does not produce a solution tree, and

it is susceptible to infinite loops, depending on the properties of the
AND/OR graph (cycles).

The program can easily be modified to produce a solution tree. We have to
modify the solve relation so that it has two arguments:

solve(Node, SolutionTree)

PROBLEM REDUCTION AND AND/OR GRAPHS 297

Let us represent a solution tree as follows. We have three cases:

(1) If Node is a goal node then the corresponding solution tree is Node itself.
(2) If Node is an OR node then its solution tree has the form:

Node ---> Subtree

where Subtree is a solution tree for one of the successors of Node.
(3) If Node is an AND node then its solution tree has the form:

Node ---> and : Subtrees

where Subtrees is the list of solution trees of all of the successors of Node.

For example, in the AND/OR graph of Figure 13.4, the first solution of the top
node a is represented by:

a-->b-->and:[d, e--> h]

The three forms of a solution tree correspond to the three clauses about
our solve relation. So our initial solve program can be altered by simply
modifying each of the three clauses; that is, by just adding solution tree as the
second argument to solve. The resulting program is shown as Figure 13.8. An
additional procedure in this program is show for displaying solution trees. For
example, the solution tree of Figure 13.4 is displayed by show in the following
form:

a-->b--->d
e-->h

The program of Figure 13.8 is still prone to infinite loops. One simple way
to prevent infinite loops is to keep trace of the current depth of the search and
prevent the program from searching beyond some depth limit. We can do this
by simply introducing another argument to the solve relation:

solve(Node, SolutionTree, MaxDepth)

As before, Node represents a problem to be solved, and SolutionTree is a
solution not deeper than MaxDepth. MaxDepth is the allowed depth of search
in the graph. In the case that MaxDepth = 0 no further expansion is allowed;
otherwise, if MaxDepth > 0 then Node can be expanded and its successors are
attempted with a lower depth limit MaxDepth — 1. This can easily be incorpor-
ated into the program of Figure 13.8. For example, the second clause about
solve becomes:

solve(Node, Node ---> Tree, MaxDepth) :-
MaxDepth > 0,

Node ---> or : Nodes, % Node is an OR node
member(Nodel, Nodes), % Select a successor Nodel of Node
Depthl is MaxDepth - 1, % New depth limit

solve(Nodel, Tree, Depthl). % Solve successor with lower limit

298 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

This depth-limited, depth-first procedure can also be used for simu!ating
the breadth-first search. The idea is to do the depth-first search repf.:titlvely,
each time with a greater depth limit, until a solution is found. That is, try to

% Depth-first AND/OR search
% Procedure solve(Node, SolutionTree) finds a solution tree
% for a node in an AND/OR graph

solve(Node, Node) :- % Solution tree of goal node is Node itself
goal(Node).

solve(Node, Node ---> Tree) :-
Node ---> or : Nodes, % Node is an OR node
member(Nodel, Nodes), % Select a successor Nodel of Node

solve(Nodel, Tree).

solve(Node, Node ---> and : Trees) :-
Node ---> and : Nodes, % Node is an AND node
solveall(Nodes, Trees). % Solve all Node’s successors

solveall([], []).
solveall([Node | Nodes], [Tree | Trees]) :-

solve(Node, Tree),
solveall(Nodes, Trees).

show(Tree) :- % Display solution tree
show(Tree, 0), !. % Indented by 0

show(Node ---> Tree, H) :- % Display solution tree indented by H
write(Node), write(> ---> ?),
HlisH + 7,
show(Tree, H1), !.

show(and : [T], H) :- % Display AND list of solution trees
show(T, H).

show(and : [T | Ts], H) :- % Display AND list of solution trees
show(T, H),
tab(H),

show(and : Ts, H), !.

show(Node, H) :-
write(Node), nl.

Figure 13.8 Depth-first search for AND/OR graphs. This program does not avoid
infinite cycling. Procedure solve finds a solution tree and procedure show displays such a
tree. show assumes that each node only takes one character on output.

PROBLEM REDUCTION AND AND/OR GRAPHS 299

solve the problem with depth limit 0, then with 1, then with 2, etc. Such a
program is:

simulated_breadth_first(Node, SolTree) :-
trydepths(Node, SolTree, 0). % Try search with increasing
% depth limit, start with 0

trydepths(Node, SolTree, Depth) :-
solve(Node, SolTree, Depth);
Depthl is Depth + 1, % Get new depth limit
trydepths(Node, SolTree, Depthl). % Try higher depth limit

A disadvantage of this breadth-first simulation is that the program researches
top parts of the search space each time that the depth limit is increased.

Exercises

13.1 Complete the depth-limited, depth-first AND/OR search program
according to the procedure outlined in this section.

13.2 Define in Prolog an AND/OR space for the Tower of Hanoi problem and
use this definition with the search procedures of this section.

13.3 Consider some simple two-person, perfect-information game without
chance and define its AND/OR representation. Use a depth-first
AND/OR search program to find winning strategies in the form of
AND/OR trees.

13.4 Best-first AND/OR search

13.4.1 Heuristic estimates and the search algorithm

The basic search procedures of the previous section search AND/OR graphs
systematically and exhaustively, without any heuristic guidance. For complex
problems such procedures are too inefficient due to the combinatorial com-
plexity of the search space. Heuristic guidance that aims to reduce the complex-
ity by avoiding useless alternatives becomes necessary. The heuristic guidance
introduced in this section will be based on numerical heuristic estimates of the
difficulty of problems in the AND/OR graph. The program that we shall
develop can be viewed as a generalization of the best-first search program for
the state-space representation of Chapter 12.

Let us begin by introducing an optimization criterion based on the costs
of arcs in the AND/OR graph. First, we extend our representation of AND/OR

300 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

graphs to include arc costs. For example, the AND/OR graph of Figure 13.4
can be represented by the following clauses:

--> or: [b/1, c¢/3].
---> and : [d/1, e/l1].
---> and : [f/2, g/1].
---> or : [hW/6].

---> or : [h/2, i/3].

goal(d). goal(g). goal(h).

o 60 oW

We shall define the cost of a solution tree as the sum of all the arc costs in the
tree. The optimization objective is to find a minimum-cost solution-tree. For
illustration, see Figure 13.4 again.

It is useful to define the cost of a node in the AND/OR graph as the cost of
the node’s optimal solution tree. So defined, the cost of a node corresponds to
the difficulty of the node.

We shall now assume that we can estimate the costs of nodes (without
knowing their solution trees) in the AND/OR graph with some heuristic
function . Such estimates will be used for guiding the search. Our heuristic
search program will begin the search with the start node and, by expanding
already visited nodes, gradually grow a search tree. This process will grow a
tree even in cases that the AND/OR graph itself is not a tree; in such a case the
graph unfolds into a tree by duplicating parts of the graph.

The search process will at any time of the search select the ‘most promis-
ing’ candidate solution tree for the next expansion. Now, how is the function A
used to estimate how promising a candidate solution tree is? Or, how promising
a node (the root of a candidate solution tree) is?

" For anode N in the search tree, H(N) will denote its estimated difficulty.
For a tip node N of the current search tree, H(N) is simply A(N). On the other
hand, for an interior node of the search tree we do not have to use function 4
directly because we already have some additional information about such a
node; that is, we already know its successors. Therefore, as Figure 13.9 shows,
for an interior OR node N we approximate its difficulty as:

H(N) = min(cost(N,N;) + H(N,))

i :
where cost(N, N;) is the cost of the arc from N to N,. The minimization rule in
this formula is justified by the fact that, to solve N, we just have to solve one of
its successors.

The difficulty of an AND node N is approximated by:

H(N) = ¥ (cost(N,N,) + H(N,))
i

We say that the H-value of an interior node is a ‘backed-up’ estimate.

PROBLEM REDUCTION AND AND/OR GRAPHS 301

OR node

H(N)= mﬁn(cost(N, Ni)+ H(Ni)) -
cost(N,N1)

Figure 13.9 Estimating the difficulty, H, of problems in the AND/OR graph.

In our search program, it will be more practical to use (instead of the
H-values) another measure, F, defined in terms of H, as follows. Let a node M
be the predecessor of N in the search tree, and the cost of the arc from M to N
be cost(M,N), then we define:

F(N) = cost(M,N) + H(N)
Accordingly, if M is the parent node of N, and N, N,, ... are N’s children, then:

F(N) = cost(M,N) + min F(N;), if N is an OR node
i

F(N) = cost(M,N) + Y F(N;), if N is an AND node
i

The start node S of the search has no predecessor, but let us choose the cost of
its (virtual) incoming arc as 0. Now, if 4 for all goal nodes in the AND/OR
graph is 0, and an optimal solution tree has been found, then F(S) is just the
cost of this solution tree (that is, the sum of all the costs of its arcs).

At any stage of the search, each successor of an OR node represents an
alternative candidate solution subtree. The search process will always decide to
continue the exploration at that successor whose F-value is minimal. Let us
return to Figure 13.4 again and trace such a search process when searching the
AND/OR graph of this figure. Initially, the search tree is just the start node a,
and then the tree grows until a solution tree is found. Figure 13.10 shows some
snapshots taken during the growth of the search tree. We shall assume for
simplicity that A = 0 for all the nodes. Numbers attached to nodes in Figure
13.10 are the F-values of the nodes (of course, these change during the search

302 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

as more information is accumulated). Here are some explanatory remarks to
Figure 13.10.

Expanding the initial search tree (snapshot A) produces tree B. Node a is
an OR node, so we now have two candidate solution trees: b and c. As

(A)

\
\
\
|
candidate 1 candidate 2
|
|

candidate 1

Figure 13.10 A trace of a best-first AND/OR search (using & = 0) solving the problem
of Figure 13.4.

PROBLEM REDUCTION AND AND/OR GRAPHS 303

F(b) =1<3=F(c), alternatlve b is selected for expansion. Now, how far can
alternative b be expanded? The expansion can proceed until either:

(1) the F-value of node b has become greater than that of its competitor ¢, or
(2) it has become clear that a solution tree has been found.

So candidate b starts to grow with the upper bound for F(b): F(b) < 3 = F(c).
First, b’s successors d and e are generated (snapshot C) and the F-value of b is
increased to 3. As this does not exceed the upper bound, the candidate tree
rooted in b continues to expand. Node d is found to be a goal node, and then
node e is expanded resulting in snapshot D. At this point F(b) = 9 > 3 which
stops the expansion of alternative b. This prevents the process from realizing
that & is also a goal node and that a solution tree has already been generated.
Instead, the activity now switches to the competing alternative c. The bound on
F(c) for expanding this alternative is set to 9, since at this point F(b) = 9.
Within this bound the candidate tree rooted in c is expanded until the situation
of snapshot E is reached. Now the process realizes that a solution tree (which
includes goal nodes and g) has been found, and the whole process terminates.
Notice that the cheaper of the two possible solution trees was reported a
solution by this process — that is, the solution tree in Figure 13.4(c).

13.4.2 Search program

A program that implements the ideas of the previous section is given in Figure
13.12. Before explaining some details of this program, let us consider the
representation of the search tree that this program uses.

There are several cases, as shown in Figure 13.11. The different forms of
the search tree arise from combining the following possibilities with respect to
the tree’s size and ‘solution status’:

® Size:
(1) the tree is either a single node tree (a leaf), or
(2) it has a root and (non-empty) subtrees.

® Solution status:

(1) the tree has already been discovered to be solved (the tree is a
solution tree), or

(2) it is still just a candidate solution tree.

The principal functor used to represent the tree indicates a combination of
these possibilities. This can be one of the following:

leaf solvedleaf tree solvedtree

Further, the representation comprises some or all of the following information:

304 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Case I: Search leaf

C
é leaf(N,F,C)

F=C+h(N)

Case 2: Search tree with OR subtrees

F=C+minF
tree(N,F,C,or:[T1,T2,...])

tree(N,F,C,and:[T1,T2,...])

Case 4: Solved leaf

C
@ solvedleaf (N, F)
F=C

Case 5: Solution tree rooted at OR node

C

F = C + F]
solvedtree(N,F,T)

Fi

Case 6: Solution tree rooted at AND node

Figure 13.11 Representation of the search tree.

solvedtree(N,F,and:[T1,T2,...

PROBLEM REDUCTION AND AND/OR GRAPHS 305

root node of the tree,

F-value of the tree,

the cost C of the arc in the AND/OR graph pointing to the tree,
list of subtrees,

relation among subtrees (AND or OR).

The list of subtrees is always ordered according to increasing F-values. A
subtree can already be solved. Such subtrees are accommodated at the end of
the list.

Now to the program of Figure 13.12. The top-level relation is

andor(Node, SolutionTree)

where Node is the start node of the search. The program produces a solution
tree (if one exists) with the aspiration that this will be an optimal solution.
Whether it will really be a cheapest solution depends on the heuristic function 4
used by the algorithm. There is a theorem that talks about this dependance on
h. The theorem is similar to the admissibility theorem about the state-space,
best-first search of Chapter 12. Let COST(N) denote the cost of a cheapest
solution tree of a node N. If for each node N in the AND/OR graph the
heuristic estimate A(N) < COST(N) then andor is guaranteed to find an
optimal solution. If 4 does not satisfy this condition then the solution found
may be suboptimal. A trivial heuristic function that satisfies the admissibility
condition is & = 0 for all the nodes. The disadvantage of this function is, of
course, lack of heuristic power.
The key relation in the program of Figure 13.12 is

expand(Tree, Bound, Treel, Solved)

Tree and Bound are ‘input’ arguments, and Treel and Solved are ‘output’
arguments. Their meaning is:

Tree is a search tree that is to be expanded.
Bound is a limit for the F-value within which Tree is allowed to expand.
Solved is an indicator whose value indicates one of the following three cases:

(1) Solved = yes: Tree can be expanded within bound so as to comprise a
solution tree Treel;

(2) Solved = no: Tree can be expanded to Treel so that the F-value of Treel
exceeds Bound, and there was no solution subtree before the F-value
overstepped Bound;

(3) Solved = never: Tree is unsolvable.

Treel is, depending on the cases above, either a solution tree, an extension of
Tree just beyond Bound, or uninstantiated in the case Solved = never.

306 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

/* BEST-FIRST AND/OR SEARCH

This program only generates one solution. This solution is guaranteed to be a
cheapest one if the heuristic function used is a lower bound of the actual costs of
solution trees.

Search tree is either:

tree(Node, F, C, SubTrees) tree of candidate solutions
leaf(Node, F, C) leaf of a search tree
solvedtree(Node, F, SubTrees) solution tree

solvedleaf(Node, F) leaf of solution tree

C is the cost of the arc pointing to Node

F = C + H, where H is the heuristic estimate of an optimal solution subtree rooted in
Node

SubTrees are always ordered so that:

(1) all solved subtrees are at the end of a list;

(2) other (unsolved subtrees) are ordered according to ascending F-values.
*/

- op(500, xfx, :).
- op(600, xfx, --->).

andor(Node, SolutionTree) :-
expand(leaf(Node, 0, 0), 9999, SolutionTree, yes). % Assuming 9999 < any
% F-value

% Procedure expand(Tree, Bound, NewTree, Solved)
% expands Tree with Bound producing NewTree whose
% ‘solution-status’ is Solved

% Case 1: bound exceeded

expand(Tree, Bound, Tree, no) :-
f(Tree, F), F > Bound, !. % Bound exceeded

% In all remaining cases F < Bound
% Case 2: goal encountered

expand(leaf(Node, F, C), _, solvedleaf(Node, F), yes) :-
goal(Node), !.

% Case 3: expanding a leaf

expand(leaf(Node, F, C), Bound, NewTree, Solved) :-
expandnode(Node, C, Treel), !, TThis A s swpas, el ks
. Whoa & cepandn & .U ARG na aths,
expand(Treel, Bound, NewTree, Solved); < /
Solved = never, !. % No successors, dead end

PROBLEM REDUCTION AND AND/OR GRAPHS 307

expand(tree(Node, F, C, SubTrees), Bound, NewTree, Solved) :-
Boundl1 is Bound - C,
expandlist(SubTrees, Bound1, NewSubs, Solvedl),
continue(Solved1, Node, C, NewSubs, Bound, NewTree, Solved).

% Case 4: expanding a tree

% expandlist(Trees, Bound, NewTrees, Solved)
% expands tree list Trees with Bound producing
% NewTrees whose ‘solved-status’ is Solved

expandlist(Trees, Bound, NewTrees, Solved) :-
selecttree(Trees, Tree, OtherTrees, Bound, Bound1),
expand(Tree, Bound1, NewTree, Solvedl),
combine(OtherTrees, NewTree, Solved1, NewTrees, Solved).

% ‘continue’ decides how to continue after expanding a tree list

continue(yes, Node, C, SubTrees, _, solvedtree(Node, F, SubTrees), yes) :-
backup(SubTrees, H), Fis C + H, !.

continue(never, _, _, _, _, _, never) :- !.
continue(no, Node, C, SubTrees, Bound, NewTree, Solved) :-
backup(SubTrees, H), FisC + H, !,
expand(tree(Node, F, C, SubTrees), Bound, NewTree, Solved).
% ‘combine’ combines results of expanding a tree and a tree list

combine(or : _, Tree, yes, Tree, yes) :- !. % OR list solved

combine(or : Trees, Tree, no, or : NewTrees, no) :-
insert(Tree, Trees, NewTrees), !. % OR list still unsolved

combine(or : [], -, never, _, never) :- !. % No more candidates
combine(or : Trees, _, never, or : Trees, no) :- !. % There are more candidates.

combine(and : Trees, Tree, yes, and : [Tree | Trees], yes) :-
allsolved(Trees), !. % AND list solved

combine(and : _, _, never, _, never) :- !. % AND list unsolvable

combine(and : Trees, Tree, YesNo, and : NewTrees, no) :-
insert(Tree, Trees, NewTrees), !. % AND list still unsolved

% ‘expandnode’ makes a tree of a node and its successors

expandnode(Node, C, tree(Node, F, C, Op : SubTrees)) :-
Node ---> Op : Successors,
evaluate(Successors, SubTrees),
backup(Op : SubTrees, H), F is C + H.

evaluate([], []).

308 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

evaluate([Node/C | NodesCosts], Trees) :-
h(Node, H), Fis C + H,
evaluate(NodesCosts, Treesl),
insert(leaf(Node, F, C), Treesl, Trees).

% “allsolved’ checks whether all trees in a tree list are solved
allsolved([]).

allsolved([Tree | Trees]) :-
solved(Tree),
allsolved(Trees).

solved(solvedtree(_, _, -)).
solved(solvedleaf(_, _)).
f(Tree, F) :- % Extract F-value of a tree

arg(2, Tree, F), !. % F is the 2nd argument in Tree

% insert(Tree, Trees, NewTrees) inserts Tree into
% tree list Trees producing NewTrees

insert(T, [], [T]) :- .
insert(T, [T1 | Ts)], [T, T1 | Ts]) :-
solved(T1), !.

insert(T, [T1 | Ts], [T1| Ts1]) :-
solved(T),
insert(T, Ts, Tsl), !.

insert(T, [T1 | Ts], [T, T1 | Ts]) :-
f(T, F), f(T1, F1), F=<F1, ..

insert(T, [T1 | Ts), [T1 | Ts1]) :-
insert(T, Ts, Tsl).

% ‘backup’ finds the backed-up F-value of AND/OR tree list

backup(or : [Tree | _], F) :- % First tree in OR list is best
f(Tree, F), .

backup(and : [], 0) :- !.

backup(and : [Treel | Trees], F) :-
f(Treel, F1),
backup(and : Trees, F2),
FisF1 + F2, 1.

backup(Tree, F) :-
f(Tree, F).

PROBLEM REDUCTION AND AND/OR GRAPHS 309

% Relation selecttree(Trees, BestTree, OtherTrees, Bound, Boundl):
% OtherTrees is an AND/OR list Trees without its best member

% BestTree; Bound is expansion bound for Trees, Boundl is

% expansion bound for BestTree

selecttree(Op : [Tree], Tree, Op : [], Bound, Bound) :- !. % The only candidate

selecttree(Op : [Tree | Trees], Tree, Op : Trees, Bound, Bound1) :-
backup(Op : Trees, F),
(Op = or, !, min(Bound, F, Bound1);
Op = and, Boundl1 is Bound - F).

min(A, B, A) - A<B,!.
min(A, B, B).

Figure 13.12 Best-first AND/OR search program.

Procedure
expandlist(Trees, Bound, Treesl, Solved)

is similar to expand. As in expand, Bound is a limit of the expansion of a tree,
and Solved is an indicator of what happened during the expansion (‘yes’, ‘no’ or
‘never’). The first argument is, however, a list of trees (an AND list or an OR
list):

Trees = or : [T1, T2, ...] or Trees = and : [T1, T2, ...]

expandlist selects the most promising tree T (according to F-values) in Trees.
Due to the ordering of the subtrees this is always the first tree in Trees. This
most promising subtree is expanded with a new bound Bound1. Boundl
depends on Bound and also on the other trees in Trees. If Trees is an OR list
then Boundl1 is the lower of Bound and the F-value of the next best tree in
Trees. If Trees is an AND list then Bound1 is Bound minus the sum of the
F-values of the remaining trees in Trees. Trees1 depends on the case indicated
by Solved. In the case Solved = no, Treesl is the list Trees with the most
promising tree in Trees expanded with Bound1. In the case Solved = yes, Trees1

| is a solution of the list Trees (found within Bound). If Solved = never, Treesl1 is
uninstantiated.

The procedure continue, which is called after expanding a tree list,
decides what to do next, depending on the results of expandlist. It either
constructs a solution tree, or updates the search tree and continues its expan-
sion, or signals ‘never’ in the case that the tree list was found unsolvable.

Another procedure,

combine(OtherTrees, NewTree, Solved1, NewTrees, Solved)

310 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

relates several objects dealt with in expandlist. NewTree is the expanded tree in
the tree list of expandlist, OtherTrees are the remaining, unchanged trees in the
tree list, and Solvedl indicates the ‘solution-status’ of NewTree. combine
handles several cases, depending on Solved1 and on whether the tree list is an
AND list or an OR list. For example, the clause

combine(or : _, Tree, yes, Tree, yes).

says: in case that the tree list is an OR list, and the just expanded tree was
solved, and its solution tree is Tree, then the whole list has also been solved,
and its solution is Tree itself. Other cases are best understood from the code of
combine itself.

For displaying a solution tree, a procedure similar to show of Figure 13.8
can be defined. This procedure is left as an exercise for the reader.

13.4.3 Example of problem-defining relations: route finding

Let us now formulate the route-finding problem as an AND/OR search so that
this formulation can be directly used by our andor procedure of Figure 13.12.
We shall assume that the road map is represented by a relation

s(City1, City2, D)

meaning that there is a direct connection between City1 and City2 of distance
D. Further, we shall assume there is a relation

key(City1 - City2, City3)

meaning: to find a route from City1 to City2 we should consider paths that go
through City3 (City3 is a ‘key point’ between City1 and City2). For example, in
the map of Figure 13.1, f and g are key points between a and z:

key(a-z, f). key(a-z, g).

We shall implement the following principles of route finding:

To find a route between two cities X and Z:

(1) if there are key points Y1, Y2, ... between X and Z then find either

® route from A to Z via Y1, or
® route from A to Z via Y2, or

(2) if there is no key point between X and Z then simply find some
neighbour city Y of X such that there is a route from Y to Z.

PROBLEM REDUCTION AND AND/OR GRAPHS 311

We have, then, two kinds of problems that will be represented as:

1) Xz find a route from X to Z
(2) X-ZviaY find a route from X to Z through Y

Here ‘via’ is an infix operator with precedence higher than that of ‘-’ and lower
than that of *--->’. The corresponding AND/OR graph can now be implicitly
defined by the following piece of program:

- op(560, xfx, via).

% Expansion rule for problem X-Z when
% there are key points between X and Z,
% costs of all arcs are equal 0

X-Z ---> or : ProblemList
- bagof((X-Z via Y)/0, key(X-Z, Y), ProblemList), !.

-

% Expansion rule for problem X-Z with no key points
X-Z ---> or : ProblemList
- bagof((Y-Z)/D, s(X, Y, D), ProblemList).
% Reduce a ‘via problem’ to two AND-related subproblems

X-Z via Y ---> and : [(X-Y)/0, (Y-Z)/0].
goal(X-X). % To go from X to X is trivial

The function A could be defined, for example, as the air distance between
cities.

Exercise
13.4 Write a procedure
show2(SolutionTree)

to display a solution tree found by the andor program of Figure 13.12. Let
the display format be similar to that of the show procedure of Figure 13.8,
so that show2 can be written as a modification of show, using a different
tree representation. Another useful modification would be to replace the
goal write(Node) in show by a user-defined procedure

writenode(Node, H)

which outputs Node in some suitable form, and instantiates H to the
number of characters that Node takes if output in this form. H is then used
for proper indentation of subtrees.

312

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Summary

AND/OR graph is a formalism for representing problems. It naturally
suits problems that are decomposable into independent subproblems.
Game playing is an example of such problems.

Nodes of an AND/OR graph are of two types: AND nodes and OR
nodes.

A concrete problem is defined by a start node and a goal condition. A
solution of a problem is represented by a solution graph.

Costs of arcs and nodes can be introduced into an AND/OR graph to
model optimization problems.

Solving a problem, represented by an AND/OR graph, involves search-
ing the graph. The depth-first strategy searches the graph systematically
and is easy to program. However, it may suffer from inefficiency due to
combinatorial explosion.

Heuristic estimates can be introduced to estimate the difficulty of prob-
lems, and the best-first heuristic principle can be used to guide the search.
Implementing this strategy is more difficult.

Prolog programs for depth-first search and best-first search of AND/OR
graphs were developed in this chapter.

Concepts introduced in this chapter are:

AND/OR graphs

AND arcs, OR arcs

AND nodes, OR nodes

solution graph, solution tree

arc costs, node costs

heuristic estimates in AND/OR graphs, backed-up estimates
depth-first search in AND/OR graphs

best-first search in AND/OR graphs

References

AND/OR graphs and related search algorithms are part of the classical Artifi-
cial Intelligence problem-solving and game-playing machinery. An early
example of their application is a symbolic integration program (Slagle 1963).
Prolog itself does AND/OR search. A general treatment of AND/OR graphs
and the best-first AND/OR search algorithm can be found in general books on
Artificial Intelligence (Nilsson 1971; Nilsson 1980). Our best-first AND/OR
program is a variation of an algorithm known as AO*. Formal properties of
AO* (including its admissibility) have been studied by several authors; Pearl
(1984) gives a comprehensive account of these results.

PROBLEM REDUCTION AND AND/OR GRAPHS 313

Nilsson, N. J. (1971) Problem-Solving Methods in Artificial Intelligence.
McGraw-Hill.

Nilsson, N. J. (1980) Principles of Artificial Intelligence. Tioga; also Springer-
Verlag.

Pearl, J. (1984) Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley.

Slagle, J. R. (1963) A heuristic program that solves symbolic integration
problems in freshman calculus. In: Computers and Thought (E. Feigenbaum,
J. Feldman, eds.). McGraw-Hill.

1 4 Expert Systems

An expert system is a program that behaves like an expert for some problem
domain. It should be capable of explaining its decisions and the underlying
reasoning. Often an expert system is expected to be able to deal with
uncertain and incomplete information.

To build an expert system we have to develop the following functions:
problem-solving function, user-interaction function, and dealing with uncer-
tainty. In this chapter we will develop and implement a framework of basic
ideas for building expert systems.

14.1 Functions of an expert system
e

An expert system is a program thzf/behaves like an expert in some, usually
narrow, domain of application. Typical applications include tasks such as
medical diagnosis, locating a failure in certain kind of equipment, or interpret-
ing measurement data. Expert systems have to be capable of solving problems
that require expert knowledge in a particular domain. They should possess that
knowledge in some form. Therefore they are also c;rﬁed knowledge-based
systems. However, not every knowledge-based system can be considered an
expert system. An expert system also has to be’capable, in some way, of
explaining its behaviour and its decisions to thé¢ user, as human experts do.
Such an explanation feature is especially necgssary in uncertain domains (such
as medical diagnosis) in order to enhance the user’s confidence in the system’s
advice, or to enable the user to detect a possible flaw in the system’s reasoning.
Therefore, expert systems have to have a friendly user-interaction capability
that will make the system’s reasoping transparent to the user.

An additional feature that is often required of an expert/silstem is the
ability to deal with uncertajrity and incompleteness. Information about the
problem to be solved can b€ incomplete or unreliable; relatjons in the problem
domain can be approxir;/atz: For example, we may not bg’quite sure that some
symptom is present in the patient, or that some measgréﬁlent data is absolutely
correct; some drug may cause some problem, Wusually does not. All this
requires probabilistic reasoning.

314

EXPERT SYSTEMS 315

To build an expert system we have, in general, to develop the following =

functions: e
///

° problem-solvingj@on capable of using domain- spemf;c knowledge —
this may requite dealing with uncertainty

® user-interaction function, which includes exp%iation of the system’s
intentions and decisions during and after théproblem solving process.
Each of these functions can be very cgtrrphcated and can depend on the
. domain of application and practical reqliirements. Various intricate problems
may arise in the design and implenientation. In this chapter we-will develop a
framework of basic ideas that*can be further refined.

14.2 Main structure of an expert system

It is convenient to divide the development of an expert system into three main
modules, as illustrated in Figure 14.1:

(1) aknowledge base,
(2) an inference engine,
(3) a user interface.

A knowledge-base comprises the knowledge that is specific to the domain
of application, including such things as simple facts about the domain, rules
that describe relations or phenomena in the domain, and possibly also
methods, heuristics and ideas for solving problems in this domain. An inference
engine knows how to actively use the knowledge in the base. A user interface
caters for smooth communication between the user and the system, also
providing the user with an insight into the problem-solving process carried out
by the inference engine. It is convenient to view the inference engine and the
interface as one module, usually called an expert system shell, or simply a shell
for brevity.

Knowledge

e < > Inferg:nce ¢ > ‘User —i— User

engine interface]

316 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

The foregoing scheme separates knowledge from algorithms that use the
knowledge. This division is suitable for the following reasons: the knowledge
base clearly depends on the application. On the other hand, the shell is, in
principle at least, domain independent. Thus a rational way of developing
expert systems for several applications consists of developing a shell that can be
used universally, and then to plug in a new knowledge base for each applica-
tion. Of course, all the knowledge bases will have to conform to the same
formalism that is ‘understood’ by the shell. According to practical experience
in complex expert systems the scenario with one shell and many knowledge
bases will not work quite so smoothly unless the application domains are
indeed very similar. Nevertheless, even if modifications of the shell from one
domain to another are necessary, at least the main principles can be retained.

In this chapter we are going to develop a comparatively simple expert
system shell which will, despite its simplicity, illustrate fundamental ideas and
techniques of this field. Our development plan will be as follows:

(1) Select a formalism for representing knowledge.

(2) Design an inference mechanism that corresponds to this formalism.
(3) Add user-interaction facilities.

(4) Add a facility for handling uncertainty.

14.3 If-then rules for representing knowledge

In principle, any consistent formalism in which we can express knowledge
about some problem domain can be considered for use in an expert system.
However, the language of if-then rules, also called production rules, is by far
the most popular formalism for representing knowledge and will be used here.
In general, such rules are conditional statements, but they can have various
interpretations. Examples are:

if precondition P then conclusion C
if situation S then action A
if conditions C1 and C2 hold then condition C does not hold

If-then rules usually turn out to be a natural form of expressing
knowledge, and have the following additional desirable features:

® Modularity: each rule defines a small, relatively independent piece of
knowledge.

® Incrementability: new rules can be added to the knowledge base relatively
independently of other rules

® Modifiability (as a consequence of modularity): old rules can be changed
relatively independently of other rules.

EXPERT SYSTEMS 317

® Support system’s transparency.

This last property is an important and distinguishing feature of expert systems.
By transparency of the system we mean the system’s ability to explain its
decisions and solutions. If-then rules facilitate answering the following basic
types of user’s questions:

(1) ‘How’ questions: How did you reach this conclusion?
(2) ‘Why’ questions: Why are you interested in this information?

Mechanisms, based on if-then rules, for answering such questions will be
discussed later.

If-then rules often define logical relations between concepts of the prob-
lem domain. Purely logical relations can be characterized as belonging to
‘categorical knowledge’, ‘categorical’ because they are always meant to be
absolutely true. However, in some domains, such as medical diagnosis, ‘soft’ or
probabilistic knowledge prevails. It is ‘soft’ in the sense that empirical
regularities are usually only valid to a certain degree (often but not always). In
such cases if-then rules are modified by adding a probabilistic qualification to
their logical interpretation. For example:

if condition A then conclusion B follows with certainty F

Figures 14.2, 14.3 and 14.4 give an idea of the variety of ways of express-
ing knowledge by if-then rules. They show example rules from three different
knowledge-based systems: MYCIN for medical consultation, AL/X for diag-
nosing equipment failures and AL3 for problem solving in chess.

In general, if you want to develop a serious expert system for some
chosen domain then you have to consult actual experts for that domain and
learn a great deal about it yourself. Extracting some understanding of the
domain from experts and literature, and moulding this understanding into a
chosen knowledge-representation formalism is called the art of knowledge

if
1 the infection is primary bacteremia, and
2 the site of the culture is one of the sterilesites, and
3 the suspected portal of entry of the organism is the gastrointestinal
tract
then
there is suggestive evidence (0.7) that the identity of the organism is
bacteroides.

Figure 14.2 An if-then rule from the MYCIN system for medical consultation
(Shortliffe 1976). The parameter 0.7 says to what degree the rule can be trusted.

318 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

engineering. This is, as a rule, a complex effort that we cannot afford here. But
we do need some domain and some knowledge base as material to experiment
with. For practical reasons some toy knowledge base will have to do. Figure
14.5 shows part of such a knowledge base. It consists of simple rules that help
identify animals from their basic characteristics, assuming that the identifica-
tion problem is limited just to a small number of animals.

Rules in this knowledge base are of the form:

RuleName : if Condition then Conclusion.

if

the pressure in V-01 reached relief valve lift pressure
then

the relief valve on V-01 has lifted [N=0.005, S=400]
if

NOT the pressure in V-01 reached relief valve lift pressure, and the relief
valve on V-01 has lifted

then
the V-01 relief valve opened early (the set pressure has drifted) [N=0.001,
$=2000]

Figure 14.3 Two rules from an AL/X demonstration knowledge base for fault diag-
nosis (Reiter 1980). N and § are the ‘necessity’ and ‘sufficiency’ measures described in
detail in Section 14.7. S estimates to what degree the condition part of a rule implies the
conclusion part. N estimates to what degree the truth of the condition part is necessary
for the conclusion to be true.

if
1 there is a hypothesis, H, that a plan P succeeds, and
2 there are two hypotheses,
H,, that a plan R, refutes plan P, and
H,, that a plan R, refutes plan P, and
3 there are facts: H, is false, and H, is false
then
1 generate the hypothesis, H;, that the combined plan ‘R, or R, refutes
plan P, and
2 generate the fact: H, implies not(H)

Figure 14.4 A rule for plan refinement in chess problem solving from the AL3 system
(Bratko 1982).

EXPERT SYSTEMS

319

% A small knowledge base for identifying animals

:- op(100, xfx, [has, gives, ’does not’, eats, lays, isa]).
- op(100, xf, [swims, flies]).

rulel : if
Animal has hair
or
Animal gives milk
then
Animal isa mammal.

rule2 : if
Animal has feathers
or
Animal flies and
Animal lays eggs
then
Animal isa bird.

rule3 : if

Animal isa mammal and

(Animal eats meat
or
Animal has pointed teeth and
Animal has claws and
Animal has *forward pointing eyes’)

then
Animal isa carnivore.

rule4 : if
Animal isa carnivore and
Animal has ’tawny colour’ and
Animal has ’dark spots’
then
Animal isa cheetah.

rules : if
Animal isa carnivore and
Animal has ’tawny colour’ and
Animal has ’black stripes’
then
Animal isa tiger.

320 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

rule6 : if
Animal isa bird and
Animal ’does not’ fly and
Animal swims
then
Animal isa penguin.
rule7 : if

Animal isa bird and

Animal isa ’good flyer’
then

Animal isa albatross.

fact : X isa animal :-
member(X, [cheetah, tiger, penguin, albatross]).

askable(_ gives _, Animal’ gives "What’).

askable(_ flies, ’Animal’ flies).

askable(_ lays eggs, ’Animal’ lays eggs).

askable(_ eats _, *Animal’ eats "What’).

askable(_ has _, ’Animal’ has *Something’).

askable(_ *does not’ _, ’Animal’ *does not’ DoSomething’).
askable(_ swims, ’Animal’ swims).

askable(_ isa ’good flier’, ’Animal’ isa good flier’).

Figure 14.5 A simple knowledge base for identifying animals. Adapted from Winston
(1984). The relation ‘askable’ defines those things that can be asked of the user. The
operators :, if, then, and, or are declared as in Figure 14.10.

where Conclusion is a simple assertion, and Condition is a set of simple
assertions combined by the operators and and or. We will also allow for the
operator not to be used in the condition part of rules, although with some
reservations. By an appropriate Prolog definition of operators (as in Figure
14.5) these rules are syntactically legal Prolog clauses. The operator and binds
stronger than or, which is the normal convention.

Let us consider another small knowledge base which can help locating
failures in a simple electric network that consists of some electric devices and
fuses. Such a network is shown in Figure 14.6. One rule can be:

if

lightl is on and

light1 is not working and

fusel is proved intact
then

light1 is proved broken.

EXPERT SYSTEMS

1ght
/ light 1
fuse 1 / light 2
/ heater
/ light 3
fuse 2
/ light 4

321

Figure 14.6 Connections between fuses and devices in a simple electric network.

Another rule can be:

if

heater is working

then

fusel is proved intact.

These two rules already rely on the facts (about our particular network) that
lightl is connected to fusel, and that light] and heater share the same fuse. For
another network we would need another set of rules. Therefore it is better to
state rules more generally, using Prolog variables, so that they can be used for
any network, and then add some extra information about a particular network.
Thus one useful rule may be: if a device is on and not working and its fuse is

intact then the device is broken. This translates into our rule formalism as:

broken_rule : if

then

Device is on and

not (Device is working) and
Device is connected to Fuse and

Fuse is proved intact

Device is proved broken.

A knowledge base of this sort is shown in Figure 14.7.

322 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% A small knowledge base for locating faults in an electric network

% 1If a device is on and not working and its fuse is intact
% then the device is broken

broken_rule :

if
on(Device) and
device(Device) and
not working(Device) and
connected(Device, Fuse) and
proved(intact(Fuse))

then
proved(broken(Device)).

% If a unit is working then its fuse is OK

fuse_ok_rule :
if
connected(Device, Fuse) and
working(Device)
then
proved(intact(Fuse)).

% If two different devices are connected to a fuse and
% are both on and not working then the fuse has failed
% NOTE: This assumes that at most one device is broken!

fused_rule :

if
connected(Devicel, Fuse) and
on(Devicel) and
not working(Devicel) and
samefuse(Device2, Devicel) and
on(Device2) and
not working(Device2)

then
proved(failed(Fuse)).

same_fuse_rule :
if
connected(Devicel, Fuse) and
connected(Device2, Fuse) and
different(Devicel, Device2)
then
samefuse(Devicel, Device2).

EXPERT SYSTEMS 323

fact : different(X, Y) :- not (X =Y).

fact : device(heater).
fact : device(light1).
fact : device(light2).
fact : device(light3).
fact : device(light4).

fact : connected(light1, fusel).
fact : connected(light2, fusel).
fact : connected(heater, fusel).
fact : connected(light3, fuse2).
fact : connected(light4, fuse2).

askable(on(D), on(*Device’)).
askable(working(D), working('Device’)).

Figure 14.7 A knowledge base for locating a fault in a network such as the one in
Figure 14.6.

Exercises

14.1 Consider the if-then rules of Figures 14.2 to 14.4 and translate them into
our rule notation. Propose extensions to the notation to handle certainty
measures when needed.

14.2 Think of some decision problem and try to formulate the corresponding
knowledge in the form of if-then rules. You may consider choice of
holiday, weather prediction, simple medical diagnosis and treatment,
etc.

14.4 Developing the shell

Looking at the rules of our small knowledge bases of Figures 14.5 and 14.7, we
can immediately see that they are, in their meaning, equivalent to Prolog’s own
rules. Syntactically, however, as they stand, they are merely facts from the
Prolog point of view. To get these rules to work, one simple idea would be to
rewrite them as actual Prolog rules. For example:

Animal isa mammal :-
Animal has hair;
Animal gives milk.

Animal isa carnivore :-
Animal isa mammal,
Animal eats meat.

324 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Now a tiger called Peter can be confirmed a tiger by adding, as Prolog facts,
some of Peter’s properties:

peter has hair.

peter is lazy.

peter is big.

peter has ’tawny colour’.
peter has ’black stripes’.
peter eats meat.

Then we can ask:

?- peter isa tiger.

yes

?- peter isa cheetah.

no

Although Prolog does answer questions using our knowledge base, this
cannot quite qualify as expert behaviour for at least two reasons:

(1) We cannot now ask for explanation; for example, how was it established
that Peter is a tiger and why Peter is not a cheetah.

(2) Allrelevant information had to be input into the system (as Prolog facts)
before any question was asked. This way the user may input (as in our
example) some irrelevant information, or may leave out some crucial
information. In the first case the user will do some unnecessary work, in
the latter case the system will produce wrong answers.

To rectify these two drawbacks we need a better interaction between the user
and the system during and after the reasoning process. Let us set as our goal
that the system be capable of interacting with the user as the following example
conversation illustrates (user’s responses are in boldface and Prolog’s output is
in italics):

Question, please:
peter isa tiger.

Is it true: peter has hair?
yes.

Is it true: peter eats meat?
no.

Is it true: peter has pointed teeth?
yes.

Is it true: peter has claws?
why.

To investigate, by rule3, peter isa carnivore
To investigate, by rule5, peter isa tiger
This was your question

Is it true: peter has claws?
yes.

Is it true: peter has forward pointing eyes?
yes.

Is it true: peter has tawny colour?
yes.

Is it true: peter has black stripes?
yes.

(peter isa tiger) is true

Would you like to see how?
yes.

peter isa tiger
was derived by rule5 from
peter isa carnivore
was derived by rule3 from
peter isa mammal
was derived by rulel from
peter has hair
was told
and
peter has pointed teeth
was told
and
peter has claws
was told
and
peter has forward pointing eyes
was told
and
peter has tawny colour
was told
and
peter has black stripes
was told

EXPERT SYSTEMS

325

326 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

As this conversation shows, the system asks questions of the user about
‘primitive’ information, such as:

Is it true: peter eats meat?

Such information cannot be found in the knowledge base or derived from other
information. The user can respond to such queries in two ways:

(1) by supplying the relevant information as an answer to the query, or
(2) ask the system why this information is needed.

The latter option is useful in order to enable the user to get insight into the
system’s current intentions. The user will ask ‘why’ in cases that the system’s
query appears irrelevant, or in cases that answering the query would require
additional effort on the part of the user. From the system’s explanation the user
will judge whether the information the system is asking for is worth the extra
effort of obtaining that information. Suppose, for example, the system is asking
‘Does the animal eat meat?’. Then the user, not yet knowing the answer and
not seeing the animal eating anything may decide that it is not worth waiting to
actually catch the animal at eating meat.

We might use Prolog’s trace facility in order to obtain some insight into
the system’s reasoning process. But such a trace facility would normally prove
to be too rigid for our purpose. So, instead of using Prolog’s own interpreting
mechanism, which falls short of this type of user interaction, we will build a
special interpreter facility on top of Prolog. This new interpreter will include a
user-interaction facility.

14.4.1 Outline of the reasoning process

The interpreter will accept a question and find an answer. Our rule language
allows for AND and OR combinations of conditions. An input question can be
such a combination of subquestions. Exploring questions will therefore be
similar to searching AND/OR graphs, discussed in Chapter 13.

An answer to a given question can be found in several ways, according to
the following principles:

EXPERT SYSTEMS 327

Q1 and Q2 then explore QI and now:
,isfsrlse eiseexpioteggmdv

Questions of the form

not Q

are more problematic and will be discussed later.

14.4.2 Answering ‘why’ questions

A ‘why’ question occurs when the system asks the user for some information
and the user wants to know why this information is needed. Suppose that the
system has asked:

Is a true?
The user may reply:
why?
An appropriate explanation can be along the following line:

Because:

I can use a to investigate b by rule R,, and
I can use b to investigate ¢ by rule R, and
I can use c to investigate d by rule R, and

I can use y to investigate z by rule R, and
z was your original question.

The explanation consists of showing the purpose of the information asked of
the user. The purpose is shown in terms of a chain of rules and goals that
connect this piece of information with the user’s original question. We will call
such a chain a frace. We can visualize a trace as a chain of rules that connects the
currently explored goal and the top goal in an AND/OR tree of questions.
Figure 14.8 illustrates. So, the answering of ‘why’ queries is accomplished by
moving from the current goal upwards in the search space toward the top goal.
To be able to do that we have to maintain the trace explicitly during the
reasoning process.

328 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

top goal (user’s question)

search space

rule 3

current goal

Figure 14.8 The ‘why’ explanation. The question ‘Why are you interested in the
current goal’ is explained by the chain of rules and goals between the current goal and
the user’s original question at the top. This chain is called a trace.

14.4.3 Answering ‘how’ questions

Once the system has come up with an answer to the user’s question, the user
may like to see how this conclusion was reached. A proper way of answering
such a ‘how’ question is to display the evidence: that is, rules and subgoals from
which the conclusion was reached. For our rule language, such evidence
consists of an AND/OR solution tree. Therefore our inference engine will have
to produce as an answer an AND/OR solution tree comprised of rule names
and subgoals. Just answering the top goal would not be sufficient. Such a tree
can then be displayed as a ‘how’ explanation. A suitable display form can be
achieved by properly indenting subtrees. For example:

peter isa carnivore
was derived by rule3 from
peter isa mammal
was derived by rulel from
peter has hair
was told
and
peter eats meat
was told

EXPERT SYSTEMS 329

14.5 Implementation
We will now implement our shell along the ideas developed in the previous
section. Figure 14.9 illustrates the main objects manipulated by the shell. Goal
is a question to be investigated; Trace is a chain of ancestor goals and rules
between Goal and the top-level question; Answer is an AND/OR-type solution
tree for Goal.

The main procedures of the shell will be:

explore(Goal, Trace, Answer)
which finds an answer Answer to a question Goal;

useranswer(Goal, Trace, Answer)

generates solutions for an ‘askable’ Goal by asking the user about Goal and
answers ‘why’ questions;

present(Answer)

displays the result and answers ‘how’ questions. These procedures are properly
put into execution by the ‘driver’ procedure expert.

14.5.1 Procedure explore
The heart of the shell is the procedure

explore(Goal, Trace, Answer)

Trace

. Goal

Figure 14.9 The relation explore(Goal, Trace, Answer). Answer is an AND/OR solu-
tion tree for Goal.

330 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

which will find an answer Answer to a given question Goal by using the
principles outlined in Section 14.4.1: either find Goal as a fact in the knowledge

base, or apply a rule in the knowledge base, or ask the user, or treat Goal as an
AND or OR combination of subgoals.

The meaning and the structure of the arguments are as follows:

Goal is a question to be investigated, represented as an AND/OR com-
bination of simple assertions. For example:

X has feathers or X flies and X lays eggs

Trace is a chain of ancestor goals and rules between Goal and the original,
top goal, represented as a list of items of the form

Goal by Rule

This means that Goal is being investigated by means of rule Rule.
For example, let the top goal be ‘peter isa tiger’, and the currently
investigated goal be ‘peter eats meat’. The corresponding trace,
according to the knowledge base of Figure 14.5, is:

[(peter isa carnivore) by rule3, (peter isa tiger) by rule5]
This intends to say the following:

I can use ‘peter eats meat’ in order

to investigate, by rule3, ‘peter isa carnivore’.
Further, I can use ‘peter isa carnivore’ in order
to investigate, by rule5, ‘peter isa tiger’.

Answer is an AND/OR solution tree for the question Goal. The general
form for Answer is:

Conclusion was Found

where Found represents a justification for Conclusion. The follow-
ing three example answers illustrate different possibilities:

(1) (connected(heater, fusel)) was ’found as a fact’

(2) (peter eats meat) was told

(3) (peter isa carnivore) was (’derived by’ rule3 from
(peter isa mammal) was (’derived by’ rulel from
(peter has hair) was told) and
(peter eats meat) was told)

Figure 14.10 shows the Prolog code for explore. This code implements the
principles of Section 14.4.1, using the data structures specified above.

EXPERT SYSTEMS

331

% Procedure

%

% explore(Goal, Trace, Answer)

%

% finds Answer to a given Goal. Trace is a chain of ancestor
% goals and rules. ‘explore’ tends to find a positive answer
% to a question. Answer is ‘false’ only when all the

% possibilities have been investigated and they all resulted
% in ‘false’.

- op(900, xfx, :).

- op(800, xfx, was).

- op(870, fx, if).

:- op(880, xfx, then).

- op(550, xfy, or).

- op(540, xfy, and).

- op(300, fx, ’derived by’).
- op(600, xfx, from).

:- op(600, xfx, by).

explore(Goal, Trace, Goal is true was *found as a fact’) :-
fact : Goal.

% Assume only one rule about each type of goal

explore(Goal, Trace,
Goal is TruthValue was ’derived by’ Rule from Answer) :-
Rule : if Condition then Goal, % Rule relevant to Goal
explore(Condition, [Goal by Rule | Trace], Answer),
truth(Answer, TruthValue).

explore(Goall and Goal2, Trace, Answer) :- !,
explore(Goall, Trace, Answerl),
continue(Answerl, Goall and Goal2, Trace, Answer).

explore(Goall or Goal2, Trace, Answer) :-

exploreyes(Goall, Trace, Answer); % Positive answer to Goall

exploreyes(Goal2, Trace, Answer). % Positive answer to Goal2
explore(Goall or Goal2, Trace, Answerl and Answer2) :- !,

not exploreyes(Goall, Trace, _),

not exploreyes(Goal2, Trace, _), % No positive answer

explore(Goall, Trace, Answerl), % Answerl must be negative

explore(Goal2, Trace, Answer2). % Answer2 must be negative

explore(Goal, Trace, Goal is Answer was told) :-
useranswer(Goal, Trace, Answer). % User-supplied answer

332 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

exploreyes(Goal, Trace, Answer) :-
explore(Goal, Trace, Answer),
positive(Answer).

continue(Answerl, Goall and Goal2, Trace, Answer) :-
positive(Answerl),
explore(Goal2, Trace, Answer2),
(positive(Answer2), Answer = Answerl and Answer2;
negative(Answer2), Answer = Answer2).

continue(Answerl, Goall and Goal2, _, Answerl) :-
negative(Answer1).

truth(Question is TruthValue was Found, TruthValue) :- !.

truth(Answerl and Answer2, TruthValue) :-
truth(Answerl, true),
truth(Answer2, true), !,
TruthValue = true;
TruthValue = false.

positive(Answer) :-
truth(Answer, true).

negative(Answer) :-
truth(Answer, false).

Figure 14.10 The core procedure of an expert system shell.

14.5.2 Procedure useranswer

Before developing useranswer let us consider a useful auxiliary procedure

getreply(Reply)
H:ijw’c During conversation, the user is often expected to reply with ‘yes’, ‘no’ or
Al (Jat ‘why’. The purpose of getreply is to extract such an answer from the user anq to
« » alsounderstand it properly if the user abbreviates (‘y’ or ‘n’) or makes a typing
Venne™ ? error. If the user’s reply is unintelligible then getreply will request another reply
from the user.

getreply(Reply) :-

read(Answer),
means(Answer, Meaning), !, % Answer means something?
Reply = Meaning; % Yes

nl, write(’Answer unknown, try again please’), nl, % No
getreply(Reply). % Try again

EXPERT SYSTEMS 333

means(yes, yes).
means(y, yes).
means(no, no).
means(n, no).
means(why, why).
means(w, why).

Note that getreply should be used with care because it involves interaction with
the user. For example, the following is a bad attempt to interpret the user’s
reply:

getreply(yes), interpretyes(...);
getreply(no), interpretno(...);

For example, if the user types ‘no’ the program will want this answer repeated.
Therefore a better way is:

getreply(Reply),
(Reply = yes, interpretyes(...);
Reply = no, interpretno(...);
)

The procedure

useranswer(Goal, Trace, Answer)

asks the user about Goal. Answer is the result of this inquiry. Trace is used for
explanation in the case that the user asks ‘why’.

useranswer should first check whether Goal is a kind of information that
can be asked of the user. In our shell, such kinds of goal will be called ‘askable’,
defined for now by a relation

askable(Goal)

This will be refined later. If Goalis ‘askable’ then Goal is displayed and the user
will specify whether it is true or false. In the case that the user asks ‘why’, Trace
will be displayed. If Goal is true then the user will also specify the values of
variables in Goal (if there are any).

This can be programmed as a first attempt as follows:

useranswer(Goal, Trace, Answer) :-

askable(Goal), % Can Goal be asked of the user?
ask(Goal, Trace, Answer). % Ask user about Goal

334 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

ask(Goal, Trace, Answer) :-

introduce(Goal), % Show question to user

getreply(Reply), % Read user’s reply

process(Reply, Goal, Trace, Answer). % Process the reply
process(why, Goal, Trace, Answer) :- % User is asking ‘why’

showtrace(Trace), % Show why

ask(Goal, Trace, Answer). % Ask again

process(yes, Goal, Trace, Answer) :- % User says Goal is true
Answer = true,

askvars(Goal); % Ask about variables
ask(Goal, Trace, Answer). % Ask for more solutions
process(no, Goal, Trace, false). % User says Goal is false

introduce(Goal) :-
nl, write(’Is it true: °),
write(Goal), write(?), nl.

The call askvars(Goal) will ask the user to specify the value of each variable in
Goal:

askvars(Term) :-

var(Term), !, % A variable?
nl, write(Term), write(> =),
read(Term). % Read variable’s value
askvars(Term) :-
Term =.. [Functor | Args], % Get arguments of a structure
askarglist(Args). % Ask about variables in arguments

askarglist([]).

askarglist([Term | Terms]) :-
askvars(Term),
askarglist(Terms).

Let us make a few experiments with this useranswer procedure. For
example, let the binary relation eats be declared as ‘askable’:

askable(X eats Y).

(In the following dialogue between Prolog and the user, the user-typed text is
in boldface and Prolog’s output is in italics.)

?- useranswer(peter eats meat, [], Answer).

Is it true: peter eats meat? % Question to user
yes. % User’s reply

Answer = true

EXPERT SYSTEMS 335
A more interesting example that involves variables may look like this:

?- useranswer(Who eats What, [], Answer).

Is it true: _17 eats _18? % Prolog gives internal names to variables
yes.

_I7 = peter. % Asking about variables

_18 = meat.

Answer = true
Who = peter
What = meat; % Backtrack for more solutions

Is it true: _17 eats _18?
yes.

_17 = susan.

18 = bananas.

Answer = yes
Who = susan
What = bananas;

Is it true: _17 eats _18?
no.

Answer = no

14.5.3 Refining useranswer

One drawback of our useranswer procedure that shows in the foregoing conver-
sation is the awkward appearance of Prolog-generated variable names in
Prolog’s output. Symbols like _17 should be replaced by some meaningful
words when displayed to the user.

Another, more serious, defect of this version of useranswer is the follow-
ing. If we subsequently use useranswer on the same goal, the user will have to
repeat all the solutions. If our expert system would, during its reasoning
process, come to explore the same ‘askable’ goal twice it would bore the user
with exactly the same conversation again, instead of using the information
previously supplied by the user.

Let us now rectify these two defects. First, an improvement of the
external appearance of queries to the user can be based on introducing some
standard format for each ‘askable’ goal. To this end, the relation askable can be
added a second argument which will specify this format, as shown by the
following example:

askable(X eats Y, ’Animal’ eats *Something’).

336 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

In querying the user, each variable in the question should then be replaced by
keywords in the question format. For example:

?- useranswer(X eats Y, [], Answer).

Is it true: Animal eats Something?
yes.

Animal = peter.

Something = meat.

Answer = true
X = peter
Y = meat

In an improved version of useranswer, shown in Figure 14.11, this formatting of
queries is done by the procedure:

format(Goal, ExternFormat, Question, Vars0, Variables)

% Procedure

%

% useranswer(Goal, Trace, Answer)

%

% generates, through backtracking, user-supplied solutions to Goal.
% Trace is a chain of ancestor goals and rules used for ‘why’

% explanation.

useranswer(Goal, Trace, Answer) :-
askable(Goal, _), % May be asked of the user
freshcopy(Goal, Copy), % Variables in Goal renamed
useranswer(Goal, Copy, Trace, Answer, 1).

% Do not ask again about an instantiated goal

useranswer(Goal, _, _, _, N) :-

N>1, % Repeated question?
instantiated(Goal), !,
fail. % Do not ask again

% 1s Goal implied true or false for all instantiations?

useranswer(Goal, Copy, -, Answer, _) :-
wastold(Copy, Answer, _),
instance_of(Copy, Goal), !. % Answer to Goal implied

% Retrieve known solutions, indexed from N on, for Goal

useranswer(Goal, _, _, true, N) :-
wastold(Goal, true, M),
M >=N.

EXPERT SYSTEMS 337

% Has everything already been said about Goal?

useranswer(Goal, Copy, _, Answer, _) :-
end_answers(Copy),
instance_of(Copy, Goal), !, % Everything was already said about Goal
fail.

% Ask the user for (more) solutions

useranswer(Goal, _, Trace, Answer, N) :-
askuser(Goal, Trace, Answer, N).

askuser(Goal, Trace, Answer, N) :-
askable(Goal, ExternFormat),
format(Goal, ExternFormat, Question, [], Variables), % Get question format
ask(Goal, Question, Variables, Trace, Answer, N).

ask(Goal, Question, Variables, Trace, Answer, N) :-

nl,

(Variables =[], !, % Introduce question
write(’Is it true: °);
write(’Any (more) solution to: *)),

write(Question), write(*? *),

getreply(Reply), !, % Reply = yes/no/why

process(Reply, Goal, Question, Variables, Trace, Answer, N).

process(why, Goal, Question, Variables, Trace, Answer, N) :-
showtrace(Trace),
ask(Goal, Question, Variables, Trace, Answer, N).

process(yes, Goal, _, Variables, Trace, true, N) :-
nextindex(Next), % Get new free index for *wastold’
Next1 is Next + 1,
(askvars(Variables),
assertz(wastold(Goal, true, Next)); % Record solution
freshcopy(Goal, Copy), % Copy of Goal
useranswer(Goal, Copy, Trace, Answer, Nextl)). % More answers?

process(no, Goal, _, _, _, false, N) :-
freshcopy(Goal, Copy),

wastold(Copy, true,), !, % ‘no’ means: no more solutions
assertz(end_answers(Goal)), % Mark end of answers
fail;

nextindex(Next), % Next free index for ‘wastold’
assertz(wastold(Goal, false, Next)). % ‘no’ means: no solution

format(Var, Name, Name, Vars, [Var/Name | Vars]) :-
var(Var), !.

format(Atom, Name, Atom, Vars, Vars) :-
atomic(Atom), !,
atomic(Name).

333 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

format(Goal, Form, Question, Vars0, Vars) :-
Goal =.. [Functor | Argsi],
Form =.. [Functor | Forms],
formatall(Argsl, Forms, Args2, Vars0, Vars),
Question =.. [Functor | Args2].

formatall([], [], [], Vars, Vars).

formatall([X | XL], [F | FL], [Q | QL], Vars0, Vars) :-
formatall(XL, FL, QL, Vars0, Varsl),
format(X, F, Q, Varsl, Vars).

askvars([]).

askvars([Variable/Name | Variables]) :-
nl, write(Name), write(’ =),
read(Variable), i
askvars(Variables).

showtrace([]) :-
nl, write(*This was your question’), nl.

showtrace([Goal by Rule | Trace]) :-
nl, write(*To investigate, by),
write(Rule), write(’,),
write(Goal),
showtrace(Trace).

% instance-of(T1, T2) means instance of T1 is T2; that is,
% term T1 is more general than T2 or equally general as T2

instance_of(Term, Term1) :- % Instance of Term is Terml

freshcopy(Term1, Term2), % Copy of Term1 with fresh set of variables

numbervars(Term2, 0,), !,

Term = Term2. % This succeeds if Terml1 is instance of Term

freshcopy(Term, FreshTerm) :- % Make a copy of Term with variables renamed

asserta(copy(Term)),
retract(copy(FreshTerm)), !.

lastindex(0). % Index for ‘wastold’ at start

nextindex(Next) :- % Next free index for ‘wastold’

retract(lastindex(Last)), !,
Next is Last + 1,
assert(lastindex(Next)).

Figure 14.11 Expert system shell: Querying the user and answering ‘why’ questions.

EXPERT SYSTEMS 339

Goal is a goal to be formatted. ExternFormat specifies the external format for
Goal, defined by:

askable(Goal, ExternFormat)

Question is Goal formatted according to ExternFormat. Variables is a list of
variables that appear in Goal accompanied by their corresponding keywords
(as specified in ExternFormat), added on a list Vars0. For example:

?- format(X gives documents to Y,
"Who’ gives "What’ to "Whom’,
Question, [], Variables).

Question = "Who’ gives documents to "Whom’,
Variables = [X/"Wheo’, Y/Whom’].

The other refinement, to avoid repeated questions to the user, will be
more difficult. First, all user’s answers should be remembered so that they can
be retrieved at some later point. This can be accomplished by asserting user’s
answers as elements of a relation. For example:

assert(wastold(mary gives documents to friends, true)).

In a situation where there are several user-supplied solutions to the same goal
there will be several facts asserted about that goal. Here a complication arises.
Suppose that variants of a goal (the goal with variables renamed) appear at
several places. For example:

(X has Y) and % First occurrence - Goall

(X1 has Y1) and % Second occurrence - Goal2

Further suppose that the user will be asked (through backtracking) for several
solutions to Goall. After that the reasoning process will advance to Goal2. As
we already have some solutions for Goall we want the system to apply them
automatically to Goal2 as well (since they obviously satisfy Goal2). Now
suppose that the system tries these solutions for Goal2, but none of them
satisfies some further goal. So the system will backtrack to Goal2 and should
ask the user for more solutions. If the user does supply more solutions then
these will have to be remembered as well. In the case that the system later
backtracks to Goall these new solutions will also have to be automatically
applied to Goall.

In order to properly use the information supplied by the user at different
places we will index this information. So the asserted facts will have the form

wastold(Goal, TruthValue, Index)

340 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

where Index is a counter of user-supplied answers. The procedure
useranswer(Goal, Trace, Answer)

will have to keep track of the number of solutions already produced through
backtracking. This can be accomplished by means of another procedure,
useranswer with four arguments,

useranswer(Goal, Trace, Answer, N)

where N is an integer. This call has to produce solutions to Goal indexed N or
higher. A call

useranswer(Goal, Trace, Answer)

is meant to produce all solutions to Goal. Solutions will be indexed from 1 on,
so we have the following relation:

useranswer(Goal, Trace, Answer) :-
useranswer(Goal, Trace, Answer, 1).

An outline of
useranswer(Goal, Trace, Answer, N)

is: generate solutions to Goal by first retrieving known solutions indexed from
N onwards. When these are exhausted then start querying the user about Goal
and assert the thus obtained new solutions properly indexed by consecutive
numbers. When the user says there are no more solutions, assert

end_answers(Goal)

If the user says in the first place that there are no solutions at all then assert

wastold(Goal, false, Index)

When retrieving solutions, useranswer will have to properly interpret such
information.

However, there is a further complication. The user may also specify
general solutions, leaving some variables uninstantiated. If a positive solution
is retrieved which is more general than or as general as Goal, then there is of
course no point in further asking about Goal since we already have the most
general solution. If

wastold(Goal, false, -)

then an analogous decision is to be made.

EXPERT SYSTEMS 341

Another argument, Copy (a copy of Goal), is added and used in several
matchings in place of Goal so that the variables of Goal are not destroyed. The

| }
| N L.
| The useranswer program in Figure 14.11 takes all this into account.
program also uses two auxiliary relations. One is

instantiated(Term)
which is true if Term contains no variables. The other is
instance_of(Term, Term1)

where Term1 is an instance of Term; that is, Term is at least as general as
Term1. For example:

instance_of(X gives information to Y, mary gives information to Z)
These two procedures both rely on another procedure:
numbervars(Term, N, M)

This procedure ‘numbers’ the variables in Term by replacing each variable in
Term by some newly generated term so that these ‘numbering’ terms corre-
spond to integers between N and M — 1. For example, let these terms be of the
form

var/0, var/1, var/2, ...
Then

?- Term = f(X, t(a, Y, X)), numbervars(Term, 5, M).
will result in:

Term = f(var/5, t(a, var/6, var/5))
M=7

Such a numbervars procedure is often supplied as a built-in predicate in a
Prolog system. If not, it can be programmed as follows:

numbervars(Term, N, Nplusl) :-
var(Term), !, % Variable?
Term = var/N,
Nplust is N + 1.

numbervars(Term, N, M) :-
Term =.. [Functor | Args], % Structure or atomic
numberargs(Args, N, M). % Number variables in arguments

342 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% Displaying the conclusion of a consultation and ‘how’ explanation

present(Answer) :-
nl, showconclusion(Answer),
nl, write("Would you like to see how? °),

getreply(Reply),
(Reply = yes, !, show(Answer); % Show solution tree
true).

showconclusion(Answerl and Answer2) :- !,
showconclusion(Answerl), write(’ and ’),
showconclusion(Answer2).

showconclusion(Conclusion was Found) :-
write(Conclusion).

% ‘show’ displays a complete solution tree

show(Solution) :-
nl, show(Solution, 0), !. % Indent by 0

show(Answerl and Answer2, H) :- !, % Indent by H
show(Answerl, H),
tab(H), write(and), nl,
show(Answer2, H).

show(Answer was Found, H) :- % Indent by H
tab(H), writeans(Answer), % Show conclusion
nl, tab(H),
write(’ was),
show1(Found, H). % Show evidence
show1(Derived from Answer, H) :- !,
write(Derived), write(’ from’), % Show rule name
nl, H1is H + 4,
show(Answer, H1). % Show antecedent
show1(Found, _) :- % Found = ‘told’ or ‘found as fact’

write(Found), nl.

writeans(Goal is true) :- !,
write(Goal). % Omit ‘is true’ on output

writeans(Answer) :- % This is negative answer
write(Answer).

Figure 14.12 Expert system shell: Displaying final result and ‘how’ explanation.

EXPERT SYSTEMS 343

numberargs([], N, N) :- .

numberargs([X | L], N, M) :-
numbervars(X, N, N1),
numberargs(L, N1, M).

14.5.4 Procedure present

The procedure
present(Answer)

in Figure 14.12 displays the final result of a consultation session and generates
the ‘how’ explanation. Answer includes both an answer to the user’s question,
and a derivation tree showing how this conclusion was reached. Procedure
present first presents the conclusion. If the user then wants to see how the
conclusion was reached, then the derivation tree is displayed in a suitable form
which constitutes a ‘how’ explanation. This form was illustrated by an example
in Section 14.4.3.

14.5.5 Top-level driver

Finally, for a handy access to the shell from the Prolog interpreter we need a
‘driver’ procedure which may look like the procedure expert in Figure 14.13.
expert starts the execution and coordinates the three main modules of the shell
shown in Figures 14.10 to 14.12. For example:

?- expert.
Question, please: % Prompt the user
X isa animal and goliath isa X. % User’s question

Is it true: goliath has hair?

14.5.6 A comment on the shell program

Our shell program at some places appears to lack the declarative clarity that is
typical of Prolog programs. The reason for this is that in such a shell we have to
impose a rather strict control over the execution because an expert system is
expected not only to find an answer, but also to find it in a way that appears
sensible to the user who keeps interacting with the system. Therefore, we have
to implement a particular problem-solving behaviour and not just an input—
output relation. Thus a resulting program is in fact more procedurally biased
than usual. This is one example when we cannot rely on Prolog’s own pro-
cedural engine, but have to specify the procedural behaviour in detail.

344 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% Top-level driving procedure

expert :-
getquestion(Question),
(answeryes(Question);
answerno(Question)).

answeryes(Question) :-
markstatus(negative),
explore(Question, [], Answer),
positive(Answer),
markstatus(positive),
present(Answer), nl,
write(’More solutions?),
getreply(Reply),
Reply = no.

answerno(Question) :-
retract(no_positive_answer_yet), !,
explore(Question, [], Answer),
negative(Answer),
present(Answer), nl,
write(’More negative solutions? *),
getreply(Reply),
Reply = no.

markstatus(negative) :-
assert(no_positive_answer_yet).

markstatus(positive) :-

% Input user’s question
% Try to find positive answer
% 1If no positive answer then find negative

% Look for positive answers to Question
% No positive answer yet

% Trace is empty

% Look for positive answers

% Positive answer found

% Read user’s reply
% Otherwise backtrack to ‘explore’

% Look for negative answer to question
% Has there been no positive answer?

% Otherwise backtrack to ‘explore’

retract(no_positive_answer_yet), !; true.

getquestion(Question) :-
nl, write(’Question, please’), nl,
read(Question).

Figure 14.13 Expert system shell: a ‘driver’. The shell is called from Prolog through

the procedure expert.

14.5.7 Negated goals

It seems natural to allow for negation in the left-hand sides of rules and hence
also in questions that are investigated by explore. A straightforward attempt to
deal with negated questions is as follows:

explore(not Goal, Trace, Answer) :- !,
explore(Goal, Trace, Answerl),

invert(Answerl, Answer).

% Invert truth value

EXPERT SYSTEMS 345

invert(Goal is true was Found, (not Goal) is false was Found).

invert(Goal is false was Found, (not Goal) is true was Found).

This is fine if Goal is instantiated. If it is not, problems arise. Consider, for
example:

?- expert.

Question, please:
not (X eats meat).

Is it true: Somebody eats meat?
yes.
Somebody = tiger.

Now the system will come up with the answer:

not (tiger eats meat) is false

This is not satisfying. The problem stems from what we mean by a question
such as:

not (X eats meat)

We in fact want to ask: Is there an X such that X does not eat meat? But the way
this question is interpreted by explore (as defined) is as follows:

(1) Is there an X such that X eats meat?
(2) Yes, tiger eats meat.

Thus

(3) not (tiger eats meat) is false.

In short, the interpretation is: Is it true that no X eats meat? So we will get a
positive answer only in the case that nobody eats meat. Said another way,
explore will answer the question as if X was universally quantified:

for all X: not (X eats meat)?

and not as if it was existentially quantified, which was our intention:

for some X: not (X eats meat)?

If the question explored is instantiated then this problem disappears.

346 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Otherwise, proper treatment is more complicated. Some decisions can be as
follows:

To explore not Goal, explore Goal and now:

® if Goal is false then (not Goal) is true;

® if Goal' is a solution of Goal
and Goal' is as general as Goal
then (not Goal) is false;

® if Goal' is a solution of Goal and

Goal' is more specific than Goal
then we cannot say anything definite about Goal.

We can avoid these complications by only allowing instantiated negated goals.
This can often be achieved by proper statement of rules in the knowledge base.
In Figure 14.7 we achieved this in ‘broken_rule’:

broken_rule : if
on(Device) and
device(Device) and % Instantiate Device
not working(Device) and
connected(Device, Fuse) and
intact(Fuse)
then
broken(Device).

The condition

device(Device)

will ‘protect’ the subsequent condition

not working(Device)

from being evaluated uninstantiated.

Exercise

14.3 A knowledge base can in principle contain cycles. For example:

rulel: if bottle_empty then john_drunk.
rule2: if john_drunk then bottle_empty.

Using such a knowledge base, our explore procedure may start cycling
between same goals. Modify explore to prevent such cycling. Trace can be
used for this. However, some care is necessary: if the current goal
matches a previous goal, this should not be considered a cycle if the
current goal is more general than the previous one.

EXPERT SYSTEMS 347
14.6 Dealing with uncertainty

14.6.1 Certainty measures

Our expert system shell of the previous section only deals with questions that
are either true or false. Such domains in which all answers reduce to true or
false are called categorical. As data, rules were also categorical: ‘categorical
implications’. However, many expert domains are not categorical. Typical
expert behaviour is full of guesses (highly articulated, though) that are usually
true, but there can be exceptions. Both data about a particular problem and
implications in general rules can be less than certain. We can model uncertainty
by assigning to assertions some qualification other than just true and false. Such
qualification can be expressed by descriptors — for example, true, highly likely,
likely, unlikely, impossible. Alternatively, the degree of belief can be
expressed by a real number in some interval — for example, between 0 and 1 or
-5 and +5. Such numbers are called various names, such as ‘certainty factor’,
‘measure of belief’ or ‘subjective certainty’. It would be natural to use actual
probabilities, but then practical problems arise for the following reasons:

e Human experts seem to have troubles thinking in terms of actual pro-
babilities; their likelihood estimates do not quite correspond to pro-
babilities as defined mathematically.

e Mathematically correct probabilistic treatment would require either
information that is not available or some simplification assumptions that
are not really quite justified in a practical application.

Therefore even if the likelihood measure is in the interval between 0 and 1, it is
more appropriate to-cautiously call it a ‘subjective certainty’ to indicate that it
is an expert’s estimate. Expert’s estimates do not in general satisfy the require-
ments of the probability theory. Also, the computations with such likelihood
measures may differ from the probability calculus. But nevertheless they may
quite adequately model the human certainty estimates.

Many schemes for dealing with uncertainty have been developed. We will
consider here one that is used in the systems Prospector and AL/X, which has
been applied to mineral exporation and fault diagnosis respectively. It should
be noted that the Prospector model is not perfect neither from the theoretical
nor from the practical point of view. However, it has been used practically, it is
simple and illustrative of the main principles, and therefore suitable atleast asa
first exercise. On the other hand, even much more complicated schemes are
known to be not without difficulties.

14.6.2 The Prospector model

The likelihood of events is modelled by real numbers between 0 and 1. For
simplicity we will be referring to these numbers as ‘probabilities’, although
‘subjective certainties’ would be more accurate. Relations between events can

348 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

be represented diagrammatically as an ‘inference network’. Figure 14.14 shows
an example. Boxes represent events and arcs represent relations between
events. Circles represent logical combinations of events (AND, OR, NOT).

0.001 0.001 0.001
RVLIFTEARLY RVSOLSHORT RVSWSHORT

The relief valve The relief valve The relief valve

opened early solenoid has switch has
(the set pressure shorted shorted
has drifted)
(0.001, 2000) (0.001, 1000) (0.001,400)
AND
NOT
0.005 0.005
LIFTPRESS RELVLIFT
Relief valve lift The relief valve
pressure (175 psi) has lifted
has been reached
in the separator
(0.05, 400) (0.001, 10000) (0.5,200) (0.001, 800)
0.01 0.005 0.001 0.01
VOI1SDHP VOICCRCHART RVNOISECOOL RVLIFTIND
The separator has The separator pressure Noise or cooling The relief
shut down due chart indicates that (due to gas flow) valve lift
to high pressure relief valve lift is noticeable indicator
pressure (175 psi) near the ison
reached relief valve

Figure 14.14 An AL/X inference network adapted from Reiter (1980). Numbers
attached to boxes are prior probabilities of events; numbers attached to arcs indicate the
strength of relations between events.

EXPERT SYSTEMS 349

Relations between events, pictured as arcs, mean a sort of ‘soft implica-
tion’. Let there be two events, E and H, and let the knowledge of E affect our
belief in H. If this effect was that of ‘categorical implication’ then we would
simply write:

if £ then H

In the case of ‘soft implication’ this relation can be less than certain, so some
‘strength’ can be associated with it:

if £ then H with strength S

The strength with which the likelihood of E influences the belief in H is in
Prospector modelled by two parameters:

N
S

‘necessity factor’
‘sufficiency factor’

In an inference network, this is pictured as:

The two events in such a relation are often called ‘evidence’ and ‘hypothesis’
respectively. Suppose that we investigate a hypothesis H. Then we collect
evidence E in order to confirm or disconfirm the hypothesis. S tells how
sufficient E is for H; N tells how necessary E is for H. If E'is true then the greater
S is the more likely H is. On the other hand, if E is false then the lower N is the
less likely H is. In a case that the likelihood of E is somewhere between certain
and impossible, the likelihood of H is determined by interpolation between the
extreme cases. The extreme cases are:

(1) Eis known to be false
(2) Eis known to be true
(3) nothing is known about E

There is a prior probability p,(H) for each event H in the inference
network. So p,(H) is the (unconditional) probability of event H if no positive or
negative evidence is known. If there is some evidence E known then the
probability of H is changed from p(H) into p(H|E). The degree of change
depends on the strength of the arc between E and H in the network. So, in
general, we start investigating hypotheses assuming their prior probabilities.
During investigation more information is accumulated, and this will reflect in
the changes of the probabilities of events in the network. These changes will
propagate through the network from event to event according to the links

350 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

between events. In Figure 14.14, for example, assume that the relief-valve lift-
indicator is learned to be on. This information will affect our belief that the
relief valve has lifted, and this may in turn affect our belief that the set pressure
has drifted.

(2)
N.S Ppo = prior probability
Po(E) ®.5) po(H) P = posterior probability
p(E) p(H|E)

odds(H) = M = odds,(H)

u] s

Interpolation rule

for multiplier M
1
N ¢
0 poE) 1
—
p(E)
(b)
E not £
p -@ 1-p
p E
Eyand E, and E;
5 — D)
p = min(p;)
ps E3 i
E
b Fa E,or E,or E;
5 —3 o)
p = max(p;)
p E i

Figure 14.15 Probability propagation rules in Prospector and AL/X: (a) ‘soft implica-
tion’ with strength {N,S); (b) logical relations.

EXPERT SYSTEMS 351

Figure 14.15 shows one way of implementing such propagation effects.
Part of the calculation is done with odds instead of probabilities. This is not
necessary in principle, but convenient. There is a simple relation between odds
and probabilities:

odds
prob

prob/(1 - prob)
odds/(1 + odds)

Let E ‘softly imply’ H; then, according to Figure 14.15,
odds(H\E) = M * odds,(H)

where the multiplier M is determined by the prior and posterior probabilities of
E, and by the strength (N, S) of the link between E and H. Prospector’s rules (in
Figure 14.15) that combine probabilities of logically combined events (min and
max) are supposed appropriately to model the human judgement regarding the
combinations of subjective certaintities.

14.6.3 Outline of an implementation

Let us first extend the rule language in order to handle uncertainty. Each rule
can be added a ‘strength modifier’ defined by two non-negative real numbers S
and N. A suitable format is:

RuleName : if
Condition
then
Conclusion
with
strength(N, S).

Example rules from Figure 14.14 can be expressed in this form as follows:

rulel : if
not liftpress and
relvlift
then
rvliftearly
with
strength(0.001, 2000).

rule4 : if
v01sdhp
then
liftpress
with
strength(0.05, 400).

352 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

To extend our expert system shell of Section 14.5 to deal with uncer-
tainty, changes are needed in most procedures. Let us concentrate just on the
procedure

explore(Goal, Trace, Answer)

We will assume here that Goal contains no variables (as in the cases of
Prospector and AL/X). This greatly simplifies matters (especially in procedure
useranswer). So Goal can be a logical combination of simple propositions. For
example:

not liftpress and relvlift

The chain of antecedent goals and rules, Trace, can be represented in the same
way as in Section 14.5. The form of Answer, however, needs modification in
order to introduce probabilities. We can combine a goal and its probability into
a term of the form:

Goal : Probability
So an example of Answer is:
rvliftind : 1 was told

This means that the user has told the system that the event rvliftind certainly
happened.

Another modification in the representation of Answer is necessary
because several independent links can bear on the same event. Then the
probability of this. event can be multiplicatively affected by the odds
multipliers, as in Figure 14.15, from all the links. In such a case, Answer will
contain the list of all relevant derivation branches. An example of such an
answer from the network of Figure 14.14 can be (properly arranged for better
readability):

liftpress : 1 was ’derived by’
[rule4 from vO1sdhp : 1 was told,
rule5 from vOl1ccrchart : 1 was told]

Procedure explore, which produces answers in this form, is programmed
in Figure 14.16. explore calls the predicatc?(

implies(PO, P, Strength, Prob0, Prob)

which is the ‘soft implication’ relation (see Figure 14.15). PO is the prior

EXPERT SYSTEMS 353

probability of the evidence, E, and P is its posterior probability. Strength is the
strength of the implication, represented as

strength(N, S)

Prob0 and Prob are the prior and the posterior probability respectively of the
hypothesis, H.

It should be noted that this is a very simple implementation that only
caters for the probability propagation in an inference network, and may behave
unintelligently. It pays no attention to what lines of analysis are currently most
important. In a more elaborate version, the exploration process should be
guided toward the most critical pieces of evidence. It should also aim at asking
the user as few questions as possible.

Finally, a few comments about a new useranswer procedure. It would be
simpler than that in Figure 14.11 since now we have no variables in queries to
the user. This time the user will answer by a probability (instead of ‘yes’ or
‘no’). In the case that the user knows nothing about the event asked, he or she
will leave the prior probability of that event unchanged. The user may also
answer ‘why’ and be shown Trace as a ‘why’ explanation. In addition the user
should be allowed to ask: What is currently the probability of my hypothesis?
The user may then, if tired of supplying information (or pressed by time),
conclude the consultation session with a system’s answer that is based on partial
information only.

% Procedure

%

% explore(Goal, Trace, Answer)

%

% finds a likelihood measure that Goal is true. Answer

% contains this likelihood. Trace is the chain of ancestor
% goals and rules, and can be used for ‘why’ explanations.

explore(Goal, Trace, (Goal : Prob) was *derived by’ RulesAnswers) :-
bagof(Rule : if Condition then Goal with Strength,
Rule : if Condition then Goal with Strength,
Rules), % All rules about Goal
prior(Goal, Prob0), % Prior probability of Goal
modify(Prob0, Rules, Trace, Prob, RulesAnswers). % Modify prior probability

explore(Goall and Goal2, Trace,
(Goall and Goal2 : P) was ’derived from’ (Answerl and Answer2)) :-
!
explore(Goall, Trace, Answerl),
explore(Goal2, Trace, Answer2),
probability(Answer1, P1),
probability(Answer2, P2),
min(P1, P2, P).

354 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

explore(Goall or Goal2, Trace,
(Goall or Goal2 : P) was ’derived from’ (Answerl and Answer2)) :-
!
explore(Goall, Trace, Answerl),
explore(Goal2, Trace, Answer2),
probability(Answerl, P1),
probability(Answer2, P2),
max(P1, P2, P).

explore(not Goal, Trace, (not Goal : Prob) was *derived from’ Answer)) :-
1

explore(Goal, Trace, Answer),
probability(Answer, P),
invert(P, Prob).

explore(Goal, Trace, (Goal : Prob) was told) :-
useranswer(Goal, Trace, Prob). % User-supplied answer

% Relation

%

% modify(Prob0, Rules, Trace, Prob, RulesAnswers)

%

% There is a goal Goal whose prior probability is Prob0; Rules
% bear on Goal; the cumulative effect of these rules (through
% their condition parts) modifies Prob0 into Goal’s posterior
% probability Prob; Trace is the list of Goal’s ancestor goals
% and rules; RulesAnswers are the results of analysis of the

% condition parts of Rules.

modify(Prob0, [], Trace, Prob0, []). % No rule — no effect

modify(Prob0,
[Rule : if Cond then Goal with Strength | Rules],
Trace, Prob, [Rule from Answer | RulesAnswers])

explore(Cond, [Goal by Rule | Trace], Answer), % Condition of first rule
prior(Cond, P0),

probability(Answer, P),

implies(PO, P, Strength, Prob0, Probl), % A ‘soft implication’ rule
modify(Probl, Rules, Trace, Prob, RulesAnswers).

Figure 14.16 Finding the likelihood of a hypothesis by certainty propagation in an
inference network of the Prospector-AL/X type.

EXPERT SYSTEMS 355

14.7 Concluding remarks

Our expert system shell can be elaborated in a number of ways. Several critical
comments and suggestions for elaboration can be made at this point.

Our programs are a straightforward implementation of basic ideas, and
do not pay much attention to the issue of efficiency. A more efficient imple-
mentation would require more sophisticated data structures, indexing or
hierarchy of rules, etc.

Our explore procedure is susceptible to cycling if the rules in the
knowledge base ‘cyclicly’ mention the same goal. This can be easily rectified by
adding a cycle check in explore: test whether the current goal is an instance of
another goal that is already on Trace.

Our ‘how’ explanation outputs a whole proof tree. In the case of a large
proof tree it would be better to output just the top part of the tree and then let
the user ‘walk’ through the rest of the tree as he or she wishes. The user would
then inspect the proof tree selectively by using commands such as ‘Move down
branch 1’, ‘Move down branch 2’, ..., ‘Move up’, ‘Enough’.

In the ‘how’ and ‘why’ explanatlons our shell just mentions rules by their
names, and does not show the rules explicitly. The user should be offered the
option to request rules to be displayed explicitly during a consultation session.

Querying the user so that the dialogue looks natural proved to be compli-
cated. Our solution works to some extent, but further problems may appear in
several ways, for example:

Is it true: susan flies?
no.

Is it true: susan isa good flyer?

Of course not, if Susan cannot fly at all! Another example is:

Any (more) solution to: Somebody flies?
yes.

Somebody = bird.

Is it true: albatross flies?

To cope with such defects, additional relations between concepts dealt with by
the expert system would have to be added. Typically, these new relations
would specify hierarchical relations between objects and properties

Another refinement of the user-querying procedure would involve the
planning of an optimal querying strategy. The optimization objective would be
to minimize the number of questions asked of the user before a conclusion is
reached. There would be, of course, alternative strategies and which of them
would eventually be the shortest would depend on user’s answers. A decision
of what alternative strategy to pursue can be based on some a priori pro-
babilities to assess probabilistically the ‘cost’ of each alternative. This assess-
ment might have to be recomputed after each user’s answer.

356 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

There is another measure that can be optimized: the length of the
derivation of a conclusion. This would tend to produce simple ‘how’ explana-
tions. We can reduce the complexity of explanations also by selectively treating
individual rules. Thus some rules would not be put into Trace and Answer in the
explore procedure. In this case the knowledge base would have to specify which
rules are ‘traceable’, and should therefore appear in explanations, and which
should not.

An intelligent expert system should be probabilistically guided so that it
concentrates on the currently most likely hypothesis among the competing
ones. It should query the user about the information that discriminates best
among the top hypotheses.

Our example expert systems were of classification, or ‘analysis’, type as
opposed to the ‘synthesis’ type where the task is to construct something. The
result can in the latter case be a plan of actions to accomplish some task — for
example, a plan for a robot, a computer configuration that satisfies a given
specification, or a forced combination in chess. Our fault diagnosis example
can be naturally extended to involve actions; for example, if nothing can be
inferred because devices are switched off the system may suggest ‘Switch on
light 3’. This would entail the problem of optimal plans: minimize the number
of actions necessary to reach a conclusion.

Projects

Complete our shell that deals with uncertainties (add a corresponding
useranswer and other procedures).

Consider critical comments and possible extensions to our expert system shell,
as discussed, and design and implement corresponding improvements.

Summary

e Typical functions that are required of an expert system are:

solving problems in a given domain,
explaining the problem-solving process,
dealing with uncertainty and incomplete information.

e Itis convenient to view an expert system as consisting of two modules: a
shell and a knowledge base. A shell, in turn, consists of an inference
mechanism and a user interface.

e Building an expert system shell involves decisions regarding the
knowledge-representation formalism, the inference mechanism, the
user-interaction facility and the treatment of uncertainty.

e If-then rules, or production rules, are the most common form of repre-
senting knowledge in expert systems.

EXPERT SYSTEMS 357

® The shell, developed and programmed in this chapter,

interprets if-then rules,
provides ‘how’ and ‘why’ explanations, and
queries the user about the information needed.

The inference engine of our shell was extended to handle uncertainty.
Concepts discussed in this chapter are:

expert systems

knowledge base, expert system shell, inference engine
if-then rules, production rules

‘how’ explanation, ‘why’ explanation

categorical knowledge, uncertain knowledge
inference network, certainty propagation

References

A collection of papers that deal with various aspects of expert systems and
knowledge engineering is Michie (1979). Two early and influential expert
systems, MYCIN and Prospector, are described by Shortliffe (1976) and Duda
et al. (1979). Buchanan and Shortliffe (1984) is a good collection of papers
related to the MYCIN experiments. Weiss and Kulikowski (1984) describe
practical experience in designing expert systems. The question of handling
uncertainty in expert systems is not quite settled yet; Quinlan (1983) compares
various approaches. The design of our expert system shell is to some degree
similar to that described by Hammond (1984). Some of the examples used in
the text are adapted from Winston (1984), Shortliffe (1976), Dudaetal. (1979),
Bratko (1982), and Reiter (1980).

Bratko, I. (1982) Knowledge-based problem-solving in AL3. In: Machine
Intelligence 10 (J. E. Hayes, D. Michie, Y. H. Pao, eds.). Ellis Horwood.

Buchanan, B. G. and Shortliffe, E. H. (1984, eds.) Rule-based Expert Systems:
The MYCIN Experiments of the Stanford Heuristic Programming Project.
Addison-Wesley.

Duda, R., Gaschnig, J. and Hart, P. (1979) Model design in the Prospector
consultant system for mineral exploration. In: Expert Systems in the
Microelectronic Age (D. Michie, ed.). Edinburgh University Press.

Hammond, P. (1984) Micro-PROLOG for Expert Systems. In: Micro-

PROLOG: Programming in Logic (K. L. Clark, F. G. McCabe, eds.). Pren-
tice-Hall.

Michie, D. (1979, ed.) Expert Systems in the Microelectronic Age. Edinburgh
University Press.

358 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Quinlan, J. R. (1983) Inferno: a cautious approach to uncertain reasoning. The
Computer Journal 26: 255-270.

Reiter, J. (1980) AL/X: An Expert System Using Plausible Inference. Oxford:
Intelligent Terminals Ltd.

Shortliffe, E. (1976) Computer-based Medical Consultations: MYCIN.
Elsevier.

Weiss, S. M. and Kulikowski, C. A. (1984) A Practical Guide to Designing
Expert Systems. Chapman and Hall.

Winston, P. H. (1984) Artificial Intelligence (second edition). Addison-
Wesley.

1 5 Game Playing

In this chapter we will consider techniques for playing two-person, perfect-
information games, such as chess. For interesting games, trees of possible
continuations are far too complex to be searched exhaustively, so other
approaches are necessary. One method is based on the minimax principle,
efficiently implemented as the alpha-beta algorithm. In addition to this stan-
dard technique, we will develop in this chapter a program based on the Advice
Language approach for introducing pattern knowledge into a chess-playing
program. This rather detailed example further illustrates how well Prolog is
suited for the implementation of knowledge-based systems.

15.1 Two-person, perfect-information games

The kind of games that we are going to discuss in this chapter are called two-
person, perfect-information games. Examples of games of this kind are chess,
checkers and go. In such games there are two players that make moves
alternatively, and both players have the complete information of the current
situation in the game. Thus this definition excludes most card games. The game
is over when a position is reached that qualifies as ‘terminal’ by the rules of the
game — for example, mate in chess. The rules also determine what is the
outcome of the game that has ended in this terminal position.

Such a game can be represented by a game tree. The nodes in such a tree
correspond to situations, and the arcs correspond to moves. The initial situa-
tion of the game is the root node; leaves of the tree correspond to terminal
positions.

In most games of this type the outcome of the game can be win, loss or
draw. We will now consider games with just two outcomes: win and loss.
Games where a draw is a possible outcome can be reduced to two outcomes:
win, not-win. The two players will be called ‘us’ and ‘them’. ‘Us’ can win in a
non-terminal ‘us-to-move’ position if there is a legal move that leads to a won
position. On the other hand, a non-terminal ‘them-to-move’ position is won for
‘us’ if all the legal moves from this position lead to won positions. These rules
correspond to AND/OR tree representation of problems discussed in Chapter

359

360 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

13. The concepts from AND/OR trees and games correspond as follows:

game positions problems

terminal won position goal node, trivially solved problem
terminal lost position unsolvable problem

won position solved problem

us-to-move position OR node

them-to-move position AND node

Clearly, many concepts from searching AND/OR trees can be adapted for
searching game trees.

A simple program that finds whether an us-to-move position is won can
be defined as follows:

won(Pos) :-
terminalwon(Pos). % A terminal won position
won(Pos) :-
not terminallost(Pos),
move(Pos, Posl), % A legal move to Posl
not (move(Posl, Pos2), % No opponent’s move leads to a
not won(Pos2)). % not-won position

The rules of the game are built into the predicates move(Pos, Pos1) to generate
legal moves, and terminalwon(Pos) and terminallost(Pos) to recognize termi-
nal positions that are won or lost by the rules of the game. The last rule above
says, through the double use of not: there is no them-move that leads to a not-
won position. In other words: all them-moves lead to a won position.

AN AN T initial position
Lply
2ply ~ 30 successor positions
80 ply =
40 moves
~ 30 x 30 =~ 1000 positions
-
~ 40 it
\J/ O eee0cecsscsccscccssscccoe O 1000 pOSltlons

Figure 15.1 The complexity of game trees in chess. The estimates here are based on an
approximation that there are about 30 legal moves from each chess position, and that
terminal positions occur at a depth of 40 moves. One move is 2 plies (1 half-move by
each side).

GAME PLAYING 361

As with analogous programs for searching AND/OR graphs, the above
program uses the depth-first strategy. In addition, this program does not
prevent cycling between positions. This may cause problems as the rules of
some games allow repetition of positions. However, this repetition is often only
superficial. By rules of chess, for example, after a three-fold repetition the
game can be claimed a draw.

The foregoing program shows the basic principle. However, much more
powerful techniques are necessary for practically dealing with complicated
games like chess or go. The combinatorial complexity of these games makes
our naive search algorithm, which only stops at terminal positions of the game,
completely infeasible. Figure 15.1 illustrates this point with respect to chess.
The search space of astronomical proportions includes some 10" positions. It
can be argued that equal positions in the tree of Figure 15.1 occur at different
places. Still, it has been shown that the number of different positions is far
beyond anything manageable by forseeable computers.

Project

Write a program to play some simple game (like nim) using the straightforward
AND/OR search approach.

15.2 The minimax principle

As searching game trees exhaustively is not feasible for interesting games,
other methods that rely on searching only part of the game tree have been
developed. Among these, a standard technique used in computer game playing
(chess) is based on the minimax principle. A game tree is only searchedupto a
certain depth, typically a few moves, and then the tip nodes of the search tree
are evaluated by some evaluation function. The idea is to assess these terminal
search positions without searching beyond them, thus saving time. These
terminal position estimates then propagate up the search tree according to the
minimax principle. This yields position values for all the positions in the search
tree. The move that leads from the initial, root position to its most promising
successor (according to these values) is then actually played in the game.

Notice that we distinguish between a ‘game tree’ and a ‘search tree’. A
search tree is normally a part of the game tree (upper part) — that is, the part
that is explicitly generated by the search process. Thus, terminal search posi-
tions do not have to be terminal positions of the game.

Much depends on the evaluation function which, in most games of
interest, has to be a heuristic estimator that estimates the winning chances from
the point of view of one of the players. The higher the value the higher the
player’s chances are to win, and the lower the value the higher the opponent’s
chances are to win. As one of the players will tend to achieve a high position
value, and the other a low value, the two players will be called MAX and MIN

362 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

respectively. Whenever MAX is to move, he or she will choose a move that
maximizes the value; on the contrary, MIN will choose a move that minimizes
the value. Given the values of the bottom-level positions in a search tree, this
principle (called minimax) will determine the values of all the other positions in
the search tree. Figure 15.2 illustrates. In the figure, levels of positions with
MAX to move alternate with those with MIN to move. The bottom-level
position values are determined by the evaluation function. The values of the
internal nodes can be computed in a bottom-up fashion, level by level, until the
root node is reached. The resulting root value in Figure 15.2 is 4, and accord-
ingly the best move for MAX in position a is a-b. The best MIN’s reply is b-d,
etc. This sequence of play is also called the main variation. The main variation
defines the ‘minimax-optimal’ play for both sides. Notice that the value of the
positions along the main variation does not vary. Accordingly, correct moves
are those that preserve the value of the game.

a MAXtomove

Static
values

Figure 15.2 Static values (bottom level) and minimax backed-up values in a search
tree. The indicated moves constitute the main variation — that is, the minimax optimal
play for both sides.

We distinguish between the bottom-level values and the backed-up
values. The former values are called ‘static’ since they are obtained by a ‘static’
evaluation function, as opposed to backed-up values that are obtained
‘dynamically’ by propagation of static values up the tree.

The value propagation rules can be formalized as follows. Let us denote
the static value of a position P by

v(P)
and the backed-up value by

V(P)

GAME PLAYING 363

Let P,, ..., P, be legal successor positions of P. Then the relation between static
values and backed-up values can be defined as:

V(P) = v(P) if P is a terminal position in a search tree (n = 0)

V(P) = max V(P,) if Pis a MAX-to-move position
i

V(P) = min V(P,) if P is a MIN-to-move position
i

A Prolog program that computes the minimax backed-up value for a
given position is shown in Figure 15.3. The main relation in this program is

minimax(Pos, BestSucc, Val)

where Val is the minimax value of a position Pos, and BestSucc is the best
successor position of Pos (the move to be played to achieve Val). The relation

moves(Pos, PosList)

corresponds to the legal-move rules of the game: PosList is the list of legal

% Minimax procedure: minimax(Pos, BestSucc, Val)
% Pos is a position, Val is its minimax value; best move
% from Pos leads to position BestSucc

minimax(Pos, BestSucc, Val) :-

moves(Pos, PosList), !, % Legal moves in Pos produce PosList
best(PosList, BestSucc, Val);
staticval(Pos, Val). % Pos has no successors

best([Pos], Pos, Val) :-
minimax(Pos, _, Val), !.

best([Pos1 | PosList], BestPos, BestVal) :-
minimax(Posl, _, Vall),
best(PosList, Pos2, Val2),
betterof(Pos1, Vall, Pos2, Val2, BestPos, BestVal).

betterof(Pos0, Val0, Pos1, Vall, Pos0, Val0) :-
min_to_move(Pos0), Val0 > Vall, !;
max_to_move(Pos0), Val0 < Vali, !.

betterof(Pos0, Val0, Posl1, Vall, Posl, Vall).

Figure 15.3 A straightforward implementation of the minimax principle.

364 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

successor positions of Pos. The predicate moves is assumed to fail if Pos is a
terminal search position (a leaf of the search tree). The relation

best(PosList, BestPos, BestVal)

selects the ‘best’ position BestPos from a list of candidate positions PosList.
BestVal is the value of BestPos, and hence also of Pos. ‘Best’ is here either
maximum or minimum, depending on the side to move.

15.3 The alpha-beta algorithm: an efficient implementation
of minimax

The program in Figure 15.3 systematically visits all the positions in the search
tree, up toits terminal positions in a depth-first fashion, and statically evaluates
all the terminal positions of this tree. Usually not all this work is necessary in
order to correctly compute the minimax value of the root position. Accord-
ingly, the search algorithm can be economized. The improvement can be based
on the following idea: Suppose that there are two alternative moves; once one
of them has been shown to be clearly inferior to the other, it is not necessary to
know exactly how much inferior it is for making the correct decision. For
example, we can use this principle to reduce the search in the tree of Figure
15.2. The search process here proceeds as follows:

(1) Start with position a.

(2) Move down to b.

(3) Move down to d.

(4) Take the maximum of d’s successors yielding V(d) = 4.
(5) Backtrack to b and move down to e.

(6) Consider the first successor of e whose value is 5. At this point MAX (who
is to move in) is guaranteed at least the value of 5 in position e regardless
of other (possibly better) alternatives from e. This is sufficient for MIN to
realize that, at node b, the alternative e is inferior to d, even without
knowing the exact value of e.

On these grounds we can neglect the second successor of e and simply assign to
e an approximate value 5. This approximation will, however, have no effect on
the value of b and, hence, of a.

The celebrated alpha-beta algorithm for efficient minimaxing is based on
this idea. Figure 15.4 illustrates the action of the alpha-beta algorithm on our
example tree of Figure 15.2. As Figure 15.4 shows, some of the backed-up
values are approximate. However, these approximations are sufficient to

GAME PLAYING 365

a MAXtomove

¢ MIN to move

Figure 15.4 The tree of Figure 15.2 searched by the alpha-beta algorithm. The alpha-
beta search prunes the nodes shown by dotted lines, thus economizing the search. As a
result, some of the backed-up values are inexact (nodes c, e, f; compare with Figure
15.2). However, these approximations suffice for determining the root value and the
main variation correctly.

determine the root value precisely. In the example of Figure 15.4, the alpha-
beta principle reduces the search complexity from eight static evaluations (as
originally in Figure 15.2) to five static evaluations.

As said before, the key idea of the alpha-beta pruning is to find a ‘good
enough’ move, not necessarily the best, that is sufficiently good to make the
correct decision. This idea can be formalized by introducing two bounds,
usually denoted Alpha and Beta, on the backed-up value of a position. The
meaning of these bounds is: Alpha is the minimal value that MAX is already
guaranteed to achieve, and Beta is the maximal value that MAX can hope to
achieve. From MIN’s point of view, Beta is the worst value for MIN that MIN is
guaranteed to achieve. Thus, the actual value (that is to be found) lies between
Alpha and Beta. If a position has been shown that its value lies outside the
Alpha-Beta interval then this is sufficient to know that this position is not in the
main variation, without knowing the exact value of this position. We only have
to know the exact value of this position if this value is between Alpha and Beta.
Formally, we can define a ‘good enough’ backed-up value V(P, Alpha, Beta) of
a position P, with respect to Alpha and Beta, as any value that satisfies the
following requirements:

V(P,Alpha, Beta) < Alpha if V(P) = Alpha
V(P,Alpha,Beta) = V(P) if Alpha < V(P) < Beta
V(P,Alpha, Beta) 2 Beta if V(P) 2 Beta

Obviously we can always compute the exact value of a root position P by setting
the bounds as follows:

V(P, - infinity, + infinity) = V(P)

366 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Figure 15.5 shows a Prolog implementation of the alpha-beta algorithm.
The main relation is

alphabeta(Pos, Alpha, Beta, GoodPos, Val)

where GoodPos is a ‘good enough’ successor of Pos, so that its value Val
satisfies the requirements stated above:

Val = V(Pos,Alpha,Beta)

% The alpha-beta algorithm

alphabeta(Pos, Alpha, Beta, GoodPos, Val) :-
moves(Pos, PosList), !,
boundedbest(Poslist, Alpha, Beta, GoodPos, Val);
staticval(Pos, Val).

boundedbest([Pos | PosList], Alpha, Beta, GoodPos, GoodVal) :-
alphabeta(Pos, Alpha, Beta, _, Val),
goodenough(PosList, Alpha, Beta, Pos, Val, GoodPos, GoodVal).

goodenough([, _, _, Pos, Val, Pos, Val) :- !. % No other candidate
goodenough(_, Alpha, Beta, Pos, Val, Pos, Val) :-
min_to_move(Pos), Val > Beta, !; % Maximizer attained upper bound
max_to_move(Pos), Val < Alpha, !. % Minimizer attained lower bound

goodenough(PosList, Alpha, Beta, Pos, Val, GoodPos, GoodVal) :-
newbounds(Alpha, Beta, Pos, Val, NewAlpha, NewBeta), % Refine bounds
boundedbest(PosList, NewAlpha, NewBeta, Pos1, Vall),
betterof(Pos, Val, Pos1, Vall, GoodPos, GoodVal).

newbounds(Alpha, Beta, Pos, Val, Val, Beta) :-

min_to_move(Pos), Val > Alpha, !. % Maximizer increased lower bound
newbounds(Alpha, Beta, Pos, Val, Alpha, Val) :-
max_to_move(Pos), Val < Beta, !. % Minimizer decreased upper bound

newbounds(Alpha, Beta, _, _, Alpha, Beta).

betterof(Pos, Val, Posl, Vall, Pos, Val) :-
min_to_move(Pos), Val > Vall, !;
max_to_move(Pos), Val < Vall, !.

betterof(_, _, Posl, Vall, Pos1, Vall).

Figure 15.5 An implementation of the alpha-beta algorithm.

GAME PLAYING 367

The procedure
boundedbest(PosList, Alpha, Beta, GoodPos, Val)

finds a good enough position GoodPos in the list PosList so that the backed-up
value Val of GoodPos is a good enough approximation with respect to Alpha
and Beta.

The alpha-beta interval may get narrower (but never wider!) at deeper
recursive calls of the alpha-beta procedure. The relation

newbounds(Alpha, Beta, Pos, Val, NewAlpha, NewBeta)

defines the new interval (NewAlpha, NewBeta). This is always narrower than
or equal to the old interval (Alpha, Beta). So at deeper levels in the search tree,
the Alpha-Beta bounds tend to shrink, and positions at deeper levels are
evaluated with tighter bounds. Narrower intervals allow for grosser approx-
imations, and thus more tree pruning. An interesting question is now: How
much effort the alpha-beta algorithm saves compared with the exhaustive
minimax search program of Figure 15.3?

The efficiency of the alpha-beta search depends on the order in which
positions are searched. It is advantageous to consider strong moves for each
side first. It is easy to demonstrate by examples that if the order is unfortunate
then the alpha-beta procedure will have to visit all the positions visited by the
exhaustive minimax search. That means that in the worst case alpha-beta will
have no advantage over the exhaustive minimax search. If the order is favour-
able, however, savings can be significant. Let N be the number of terminal
search positions statically evaluated by the exhaustive minimax algorithm. It
has been proved that in the best case, when the strongest move is always
considered first, the alpha-beta algorithm will only have to statically evaluate
VN positions.

On a similar note, this same result is relevant in a practical aspect in
tournament play. In a tournament, a chess-playing program is usually given a
certain amount of time for computing the next move in the game, and the depth
to which the program can search will depend on this amount of time. The
alpha-beta algorithm will be able, in the best case, to search twice as deep as the
exhaustive minimax search. Experience shows that the same evaluation func-
tion applied at a greater depth in the tree will usually produce stronger play.

The economization effect of the alpha-beta algorithm can also be
expressed in terms of the effective branching factor (number of branches
stemming from each internal node) of the search tree. Assume that the game
tree has a uniform branching factor b. Due to the pruning effect, alpha-beta
will only search some of the branches, thus effectively reducing the branching
factor. The reduction is, in the best case, from b to Vb. In chess-playing
programs the effective branching factor due to the alpha-beta pruning becomes
about 6 compared to the total of about 30 legal moves. A less optimistic view on
this result is that in chess, even with alpha-beta, deepening the search by 1 ply

368 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

(one halph-move) increases the number of terminal search positions by a factor
of about 6.

Project

Consider a two-person game (for example, some non-trivial version of tic-tac-
toe). Write game-definition relations (legal moves and terminal game posi-
tions) and propose a static evaluation function to be used for playing the game
with the alpha-beta procedure.

15.4 Minimax-based programs: refinements and
limitations

The minimax principle, together with the alpha-beta algorithm, is the basis of
many successful game-playing programs, most notably chess programs. The
general scheme of such a program is: perform the alpha-beta search on the
current position in the game, up to some fixed depth limit (dictated by the time
constraints imposed by tournament rules), using a game-specific evaluation
function for evaluating the terminal positions of the search. Then execute the
best move (according to alpha-beta) on the play board, accept the opponent’s
reply, and start the same cycle again.

The two basic ingredients, then, are the alpha-beta algorithm and a
heuristic evaluation function. To build a good program for a complicated game
like chess many refinements to this basic scheme are needed. We will briefly
review some standard techniques.

Much depends on the evaluation function. If we had a perfect evaluation
function we would only have to consider the immediate successors of the
current position, thus practically eliminating search. But for games like chess,
any evaluation function of practically acceptable computational complexity
will necessarily be just a heuristic estimate. This estimate is based on ‘static’
features of the position (for example, the number of pieces on the board) and
will therefore be more reliable in some positions than in others. Consider for
example such a material-based evaluation function for chess and imagine a
position in which White is a knight up. This function will, of course, assess the
position in White’s favour. This is fine if the position is quiescent, Black having
no violent threat at his disposal. On the other hand, if Black can capture the
White’s queen on the next move, such an evaluation can result in a disastrous
blunder, as it will not be able to perceive the position dynamically. Clearly, we
can better trust the static evaluation in quiescent positions than in turbulent
positions in which each side has direct threats of capturing the opponent’s
pieces. Obviously, we should use the static evaluation only in quiescent posi-
tions. Therefore a standard trick is to extend the search in turbulent positions
beyond the depth limit until a quiescent position is reached. In particular, this
extension includes sequences of piece captures in chess.

GAME PLAYING 369

Another refinement is heuristic pruning. This aims at achieving a greater
depth limit by disregarding some less promising continuations. This technique
will prune branches in addition to those that are pruned by the alpha-beta
technique itself. Therefore this entails the risk of overlooking some good
continuation and incorrectly computing the minimax value.

Yet another technique is progressive deepening. The program repeatedly
executes the alpha-beta search, first to some shallow depth, and then increases
the depth limit on each iteration. The process stops when the time limit has
been reached. The best move according to the deepest search is then played.
This technique has the following advantages:

® cnables the time control; when the time limit is reached there will always
be some best move found so far;

e the minimax values of the previous iteration can be used for preliminary
ordering of position on the next iteration, thus helping the alpha-beta
algorithm to search strong moves first.

Progressive deepening entails some overhead (researching upper parts of the
game tree), but this is relatively small compared with the total effort.

A known problem with programs that belong to this general scheme is the
‘horizon effect’. Imagine a chess position in which the program’s side inevitably
loses a knight. But the loss of the knight can be delayed at the cost of a lesser
sacrifice, a pawn say. This intermediate sacrifice may push the actual loss of the
knight beyond the search limit (beyond the program’s ‘horizon’). Not seeing
the eventual loss of the knight, the program will then prefer this variation to the
quick death of the knight. So the program will eventually lose both the pawn
(unnecessarily) and the knight. The extension of search up to a quiescent
position can alleviate the horizon effect.

There is, however, a more fundamental limitation of the minimax-based
programs which lies in the limited form of the domain-specific knowledge they
use. This becomes very conspicuous when we compare the best chess programs
with human chess masters. Strong programs often search millions (and more)
of positions before deciding on the move to play. It is known from psychologi-
cal studies that human masters typically search just a few tens of positions, at
most a few hundred. Despite this apparent inferiority, chess masters usually
beat programs without too much effort. The masters’ advantage lies in their
knowledge, which far exceeds that contained in the programs. Games between
machines and strong human players show that the enormous advantage in the
calculating power cannot completely compensate the lack of knowledge.

Knowledge in minimax-based programs takes three main forms:

evaluation function,
tree-pruning heuristics,
quiescence heuristics.

The evaluation function reduces many aspects of a game situation into a single

370 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

number, and this reduction can have a detrimental effect. A good player’s
understanding of a game position, on the contrary, spans over many dimen-
sions. Let us consider an example from chess: an evaluation function will
evaluate a position as equal simply by stating that its value is 0. A master’s
assessment of the same position can be much more informative and indicative
of a further course of the game. For example, Black is a pawn up, but White has
a good attacking initiative that compensates the material, so chances are equal.

In chess, minimax-based programs often play well in sharp tactical strug-
gles when precise calculation of forced variations is decisive. Their weakness
shows in quiet positions where their play falls short of long-range plans that
prevail in such slow, strategic games. Lack of a plan makes an impression that
the program keeps wandering during the game from one idea to another. This
is particularly evident in chess endgames.

In the rest of this chapter we will consider another approach to game

playing, based on introducing pattern knowledge into a program by means of
‘advice’.

15.5 Pattern knowledge and the mechanism of ‘advice’

15.5.1 Goals and move-constraints

The method of representing game-specific knowledge that we consider in this
section belongs to the family of Advice Languages. In Advice Languages the
user specifies, in a declarative way, what ideas should be tried in certain types
of situations. Ideas are formulated in terms of goals and means of achieving the
goals. An Advice Language interpreter then finds out, through search, which
idea actually works in a given situation.

The fundamental concept in Advice Languages is a ‘piece-of-advice’. A
piece-of-advice suggests what to do (or to try to do) next in a certain type of
position. Generally speaking, advice is expressed in terms of goals to be
achieved, and means of achieving these goals. The two sides are called ‘us’ and
‘them’; advice always refers to the ‘us’ point of view. Each piece-of advice has
four ingredients:

better-goal: a goal to be achieved;
holding-goal: a goal to be maintained during play toward the better-goal;

us-move-constraints: a predicate on moves that selects a subset of all legal
us-moves (moves that should be considered of interest with respect to the
goals specified);

® them-move-constraints: a predicate to select moves to be considered by
‘them’ (moves that may undermine the goals specified).

As a simple example from the chess endgame king and pawn vs. king, consider

GAME PLAYING 3711

the straightforward idea of queening the pawn by simply pushing the pawn
forward. This can be expressed in the form of advice as:

better-goal: pawn queened;
holding-goal: pawn is not lost;
Us-move-constraints: pawn move;

them-move-constraints: approach the pawn with the king.

15.5.2 Satisfiability of advice

We say that a given piece-of-advice is satisfiable in a given position if ‘us’ can
force the achievement of the better-goal specified in the advice under the
conditions that:

(1) the holding-goal is never violated,
(2) all the moves played by ‘us’ satisfy us-move-constraints,
(3) ‘them’is only allowed to make moves that satisfy them-move-constraints.

The concept of a forcing-tree is associated with the satisfiability of a piece-
of-advice. A forcing-tree is a detailed strategy that guarantees the achievement
of the better-goal under the constraints specified by the piece-of-advice. A
forcing-tree thus specifies exactly what moves ‘us’ has to play on any ‘them’
reply. More precisely, a forcing-tree T for a given position P and a piece-
of-advice A is a subtree of the game tree such that:

the root node of T is P;
all the positions in P satisfy the holding-goal;

all the terminal nodes in T satisfy the better-goal, and no internal node in
T satisfies the better-goal;

® there is exactly one us-move from each internal us-to-move position in T;
and that move must satisfy the us-move-constraints

® T contains all them-moves (that satisfy the them-move-constraints) from
each non-terminal them-to-move position in T.

Each piece-of-advice can be viewed as a definition of a small special game
with the following rules. Each opponent is allowed to make moves that satisfy
his or her move-constraints; a position that does not satisfy the holding-goal is
won for ‘them’; a position that satisfies the holding-goal and the better-goal is
won for ‘us’. A non-terminal position is won for ‘us’ if the piece-of-advice is
satisfiable in this position. Then ‘us’ will win by executing a corresponding
forcing-tree in the play.

372 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

15.5.3 Integrating pieces-of-advice into rules and advice-tables

In Advice Languages, individual pieces-of-advice are integrated in the com-
plete knowledge representation schema through the following hierarchy. A
piece-of-advice is part of an if-then rule. A collection of if-then rules is an
advice-table. A set of advice-tables is structured into a hierarchical network.
Each advice-table has the role of a specialized expert to deal with some specific
subproblem of the whole domain. An example of such a specialized expert is an
advice-table that knows how to mate in the king and rook vs. king ending in
chess. This table is summoned when such an ending occurs in a game.

For simplicity, we will consider a simplified version of an Advice
Language in which we will only allow for one advice-table. We shall call this
version Advice Language 0, or ALO for short. Here is the structure of ALO
already syntactically tailored toward an easy implementation in Prolog.

A program in ALQ is called an advice-table. An advice-table is an ordered
collection of if-then rules. Each rule has the form:

RuleName : if Condition then AdviceList

Condition is a logical expression that consists of predicate names connected by
logical connectives and, or, not. AdviceList is a list of names of pieces-
of-advice. An example of a rule called ‘edge_rule’, from the king and rook vs.
king ending, can be:

edge_rule :
if their_king_on_edge and our_king close
then [mate_in_2, squeeze, approach, keeproom, divide].

This rule says: if in the current position their king is on the edge and our king is
close to their king (or more precisely, kings are less than four squares apart),
then try to satisfy, in the order of preference as stated, the pieces-of-advice:
‘mate_in_2’, ‘squeeze’, ‘approach’, ‘keeproom’, ‘divide’. This advice-list
specifies pieces-of-advice in the decreasing order of ambition: first try to mate
in two moves, if that is not possible then try to ‘squeeze’ the opponent’s king
toward a corner, etc. Notice that with an appropriate definition of operators,
the rule above is a syntactically correct Prolog clause.

Each piece-of-advice will be specified by a Prolog clause of another form:

advice(AdviceName,
BetterGoal :
HoldingGoal :
Us_Move_Constraints :
Them_Move_Constraints).

The goals are expressions that consist of predicate names and logical connec-

tives and, or, not. Move-constraints are, again, expressions that consist of
| predicate names and the connectives and and then: and has the usual logical

,,

GAME PLAYING 373

meaning, then prescribes the ordering. For example, a move-constraint of the
form

MC1 then MC2

says: first consider those moves that satisfy MC1, and then those that satisfy
MC2.

For example, a piece-of-advice to mate in 2 moves in the king and rook
vs. king ending, written in this syntax, is:

advice(mate_in_2,
mate :
not rooklost :
(depth = 0) and legal then (depth = 2) and checkmove :
(depth = 1) and legal).

Here the better-goal is mate, the holding-goal is not rooklost (rook is not lost).
The us-move-constraints say: at depth 0 (the current board position) try any
legal move, then at depth 2 (our second move) try checking moves only. The
depth is measured in plies. Them-move-constraints are: any legal move at
depth 1.

In playing, an advice-table is then used by repeating, until the end of the
game, the following main cycle: build a forcing-tree, then play according to this
tree until the play exits the tree; build another forcing-tree, etc. A forcing-tree
is generated each time as follows: take the current board position Pos and scan
the rules in the advice-table one by one; for each rule, match Pos with the
precondition of the rule, and stop when a rule is found such that Pos satisfies its
precondition. Now consider the advice-list of this rule: process pieces-
of-advice in this list one by one until a piece-of-advice is found that is satisfiable
in Pos. This results in a forcing-tree that is the detailed strategy to be executed
across the board.

Notice the importance of the ordering of rules and pieces-of-advice. The
rule used is the first rule whose precondition matches the current position.
There must be for any possible position at least one rule in the advice-table
whose precondition will match the position. Thus an advice-list is selected. The
first piece-of-advice in this list that is satisfiable is applied.

An advice-table is thus largely a non-procedural program. An ALO
interpreter accepts a position and by executing an advice-table produces a
forcing-tree which determines the play in that position.

15.6 A chess endgame program in Advice Language 0

Implementation of an ALO-based game-playing program can be conveniently
divided into three modules: :

(1) an ALO interpreter,

374 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

(2) an advice-table in ALO,

(3) alibrary of predicates (including rules of the game) used in the advice-
table.

This structure corresponds to the usual structure of knowledge-based systems
as follows:

® The ALQ interpreter is an inference engine.
® The advice-table and the predicate library constitute a knowledge base.

15.6.1 A miniature ALO interpreter

A miniature, game-independent ALQ interpreter is implemented in Prolog in
Figure 15.6. This program also performs the user interaction during play. The
central function of the program is the use of knowledge in an ALQ advice-table;
that is, interpreting an ALO advice-program for the generation of forcing-trees
and their execution in a game. The basic forcing-tree generation algorithm is
similar to the best-first search in AND/OR graphs of Chapter 13; a forcing-tree
corresponds to an AND/OR solution tree. On the other hand, it also resembles
the generation of a solution tree to a user’s query in the expert system shell of
Chapter 14.

For simplicity, in the program of Figure 15.6 ‘us’ is supposed to be White,
and ‘them’ is Black. The program is started through the procedure

playgame(Pos)

where Pos is a chosen initial position of a game to be played. If it is ‘them’ to
move in Pos then the program reads a move from the user, otherwise the
program consults the advice-table that is attached to the program, generates a
forcing-tree and plays its move according to the tree. This continues until the
end of the game is reached as specified by the predicate ‘end_of_ game’ (mate,
for example).

A forcing-tree is a tree of moves, represented in the program by the
following structure

Move .. [Replyl .. Ftreel, Reply2 .. Ftree2, ...]

where ‘..’ is an infix operator; Move is the first move for ‘us’; Reply1, Reply2,
etc. are the possible ‘them’ replies; and Ftreel, Ftree2, etc. are forcing-subtrees
that correspond to each of the ‘them’ replies respectively.

15.6.2 An advice-program for the king and rook vs. king ending

A broad strategy for winning with the king and rook against the sole oppo-
nent’s king is to force the king to the edge, or into a Forner if necessary, and

GAME PLAYING

% A miniature implementation of Advice Language 0
%

% This program plays a game from a given starting position
% using knowledge represented in Advice Language 0

- op(200, xfy, :).

- op(220, xfy, ..).

- op(185, fx, if).

- op(190, xfx, then).
- op(180, xfy, or).
- op(160, xfy, and).
- op(140, fx, not).

playgame(Pos) :- % Play a game starting in Pos
playgame(Pos, nil). % Start with empty forcing-tree
playgame(Pos, ForcingTree) :-
show(Pos),
(end_of_game(Pos), % End of game?

write(’End of game’), nl, !;
playmove(Pos, ForcingTree, Pos1, ForcingTreel), !,
playgame(Posl, ForcingTreel)).

% Play ‘us’ move according to forcing-tree

playmove(Pos, Move .. FTreel, Posl, FTreel) :-
side(Pos, w), % White = ‘us’
legalmove(Pos, Move, Posl),
showmove(Move).

% Read ‘them’ move

playmove(Pos, FTree, Posl, FTreel) :-
side(Pos, b),
write(*Your move: °),
read(Move),
(legalmove(Pos, Move, Posl),
subtree(FTree, Move, FTreel), !; % Move down forcing-tree
write(’Illegal move’), nl,
playmove(Pos, FTree, Pos1, FTreel)).

% 1If current forcing-tree is empty generate a new one
playmove(Pos, nil, Pos1, FTreel) :-
side(Pos, w),
resetdepth(Pos, Pos0), % Pos0 = Pos with depth 0

strategy(Pos0, FTree), !, % Generate new forcing-tree
playmove(Pos0, FTree, Pos1, FTreel).

376 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% Select a forcing-subtree corresponding to Move

subtree(FTrees, Move, FTree) :-
member(Move .. FTree, FTrees), !.

subtree(_, _, nil).

strategy(Pos, ForcingTree) :- % Find forcing-tree for Pos
Rule : if Condition then AdviceList, % Consult advice-table
holds(Condition, Pos, _), !, % Match Pos against precondition
member(AdviceName, AdviceList), % Try pieces-of-advice in turn

nl, write(*Trying’), write(AdviceName),
satisfiable(AdviceName, Pos, ForcingTree),

e

. % Satisfy AdviceName in Pos

satisfiable(AdviceName, Pos, FTree) :-
advice(AdviceName, Advice), % Retrieve piece-of-advice
sat(Advice, Pos, Pos, FTree). % ‘sat’ needs two positions for
% comparison predicates

sat(Advice, Pos, RootPos, FTree) :-
holdinggoal(Advice, HG),
holds(HG, Pos, RootPos), % Holding-goal satisfied
satl(Advice, Pos, RootPos, FTree).

satl(Advice, Pos, RootPos, nil) :-
bettergoal(Advice, BG),

holds(BG, Pos, RootPos), !. % Better-goal satisfied
sat1(Advice, Pos, RootPos, Move .. FTrees) :-
side(Pos, w), !, % White = ‘us’
usmoveconstr(Advice, UMC),
move(UMC, Pos, Move, Posl), % A move satisfying move-constr.

sat(Advice, Posl, RootPos, FTrees).

satl(Advice, Pos, RootPos, FTrees) :-
side(Pos, b), !, % Black = ‘them’
themmoveconstr(Advice, TMC),
bagof(Move .. Pos1, move(TMC, Pos, Move, Posl), MPlist),
satall(Advice, MPlist, RootPos, FTrees). % Satisfiable in all successors

Sata“(— []s - [])'

satall(Advice, [Move .. Pos | MPlist], RootPos, [Move .. FT | MFTs]) :-
sat(Advice, Pos, RootPos, FT),
satall(Advice, MPlist, RootPos, MFTs).

% Interpreting holding and better-goals:
% A goal is an AND/OR/NOT combination of predicate names

holds(Goall and Goal2, Pos, RootPos) :- !,
holds(Goall, Pos, RootPos),
holds(Goal2, Pos, RootPos).

GAME PLAYING 377

holds(Goall or Goal2, Pos, RootPos) :- !,
(holds(Goall, Pos, RootPos);
holds(Goal2, Pos, RootPos)).

holds(not Goal, Pos, RootPos) :- !,
not holds(Goal, Pos, RootPos).

holds(Pred, Pos, RootPos) :-

(Cond =.. [Pred, Pos]; % Most predicates do not depend on RootPos
Cond =.. [Pred, Pos, RootPos]),
call(Cond).

% Interpreting move-constraints

move(MC1 and MC2, Pos, Move, Posl) :- !,
move(MC1, Pos, Move, Posl),
move(MC2, Pos, Move, Posl).

move(MC1 then MC2, Pos, Move, Posl) :- !,

(move(MC1, Pos, Move, Posl);

move(MC2, Pos, Move, Posl)).

% Selectors for components of piece-of-advice
bettergoal(BG : _, BG).
holdinggoal(BG : HG : _, HG).
usmoveconstr(BG : HG : UMC : _, UMC).
themmoveconstr(BG : HG : UMC : TMC, TMC).
member(X, [X | L]).

member(X, [Y | L]) :-
member(X, L).

Figure 15.6 A miniature implementation of Advice Language 0.

then deliver mate in a few moves. An elaboration of this broad principle is:

378 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

(4) 1t none of the above
: look for a way of maintaining the

- sense of 2 and 3 (that

(5) Hnoneofl,2,3o0r4
obtaining a positic :
either vertically or

These principles are implemented in detail as an ALO advice-table in Figure
15.7. This table can be run by the ALO interpreter of Figure 15.6. Figure 15.8
illustrates the meaning of some of the predicates used in the table and the way
the table works.

The predicates used in the table are:

Goal predicates

mate their king mated

stalemate their king stalemated

rooklost their king can capture our rook

rookexposed their king can attack our rook before our king can
get to defend the rook

newroomsmaller area to which their king is restricted by our rook
has shrunk

rookdivides rook divides both kings either vertically or
horizontally

okapproachedcsquare our king approached ‘critical square’, see Figure
15.9; here this means that the Manhattan distance
has decreased

Ipatt ‘L-pattern’ (Figure 15.9)

roomgt2 the ‘room’ for their king is greater than two

squares

Move-constraints predicates

depth = N move occurring at depth = N in the search tree

legal any legal move

checkmove checking move

rookmove a rook move

nomove fails for any move

kingdiagfirst a king move, with preference for diagonal king
moves

% King and rook vs. king in Advice Language 0

% Rules

edge_rule : if their_king edge and kings_close
then [mate_in_2, squeeze, approach, keeproom,
divide_in_2, divide_in_3].

GAME PLAYING 379

else_rule : if true
then [squeeze, approach, keeproom,
divide_in_2, divide_in_3].

% Pieces-of-advice

advice(mate_in_2,
mate :
not rooklost and their_king edge :
(depth = 0) and legal then (depth = 2) and checkmove :
(depth = 1) and legal).

advice(squeeze,
newroomsmaller and not rookexposed and
rookdivides and not stalemate :
not rooklost :
(depth = 0) and rookmove :
nomove).)

advice(approach,
okapproachedcsquare and not rookexposed and
(rookdivides or lpatt) and (roomgt2 or not our_king edge) :
not rooklost :
(depth = 0) and kingdiagfirst :
nomove).

advice(keeproom,
themtomove and not rookexposed and rookdivides and okorndle and
(roomgt2 or not okedge) :
not rooklost :
(depth = 0) and kingdiagfirst :
nomove).

advice(divide_in_2,
themtomove and rookdivides and not rookexposed :
not rooklost :
(depth < 3) and legal :
(depth < 2) and legal).

advice(divide_in_3,
themtomove and rookdivides and not rookexposed :
not rooklost :
(depth < 5) and legal :
(depth < 4) and legal).

Figure 15.7 An ALO advice-table for king and rook vs. king. The table consists of two
rules and six pieces-of-advice.

380 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

v
: squeeze
@ 4
B
BLACK REPLY ,
[B
W keeproom w
BLACK REPLY J
squeeze 7

-

Figure15.8 A game fragment played by the advice-table of Figure 15.7, illustrating the
method of squeezing their king toward a corner. Pieces-of-advice used in this sequence
are keeproom (waiting move preserving ‘room’) and squeeze (‘room’ has shrunk). The
area to which their king is confined by our rook (‘room’) is shadowed. After the last
squeeze, ‘room’ shrinks from eight to six squares.

GAME PLAYING 381

(a) (b)

v

Figure 15.9 (a) Illustration of the ‘critical square’ (a crucial square in the squeezing
manoeuvres, indicated by a cross); the White king approaches the critical square by
moving as indicated. (b) The three pieces form an L-shaped pattern.

The arguments of these predicates are either positions (goal predicates) or
moves (move-constraints predicates). Goal predicates can have one or two
arguments. One argument is always the current search node; the second
argument (if it exists) is the root node of the search tree. The second argument
is needed in the so-called comparison predicates, which compare in some
respect the root position and the current search position. An example is the
predicate newroomsmaller which tests whether the ‘room’ for their king has
shrunk (Figure 15.8). These predicates, together with chess rules for king and
rook vs. king, and a board displaying procedure (show(Pos)), are program-
med in Figure 15.10.

An example of how this advice-program plays is shown in Figure 15.8.
The game would continue from the last position of Figure 15.8 as in the
following variation (assuming ‘them’ moves as given in the variation). The
algebraic chess notation is used where the files of the chessboard are numbered
‘a’,‘b’, ‘c’, etc, and ranks are numbered 1, 2, 3, etc. For example, the move ‘BK
b7’ means: move the Black king to the square in file ‘b’ and rank 7.

BK b7
WK d5 BK ¢7
WK ¢5 BK b7
WR c6 BK a7

WR b6 BK a8
WK b5 BK a7

WK c6 BK a8
WK c¢7 BK a7
WR c¢6 BK a8
WR a6 mate

Some questions can now be asked. First, is this advice-program correct in
the sense that it mates against any defence if the game starts from any king and
rook vs. king position? It is shown in Bratko (1978) by means of a formal proof

382 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

that an advice-table, effectively the same as the one in Figure 15.7, is correct in
this sense.

Another question can be: Is this advice program optimal in the sense that
it always delivers mate in the smallest number of moves? It can easily be shown
by examples that the program’s play is not optimal in this sense. It is known that
optimal variations (optimally played by both sides) in this ending are at most 16
moves long. Although our advice-table can be rather far from this optimum, it
was shown that the number of moves needed by this advice-table is still very
safely under 50. This is important because of the 50-moves rule in chess: in
endgames such as king and rook vs. king the stronger side has to mate within 50
moves; if not, a draw can be claimed.

% Predicate library for king and rook vs. king

% Position is represented by: Side..Wx : Wy..Rx : Ry..Bx : By..Depth
% Side is side to move (‘w’ or ‘b’)

% Wx, Wy are X and Y-coordinates of White king

% Rx, Ry are X and Y-coordinates of White rook

% Bx, By are coordinates of Black king

% Depth is depth of position in search tree

% Selector relations

side(Side.._, Side).

wk(_..WK.._, WK).

wr(_.._..WR.._, WR).

bk(—.._.._..BK.._, BK).

depth(_.._.._.._..Depth, Depth).

resetdepth(S..W..R..B..D, S..W..R..B..0). % Copy of position with depth 0

% Some relations between squares

n(N, N1) :- % Neighbour integers ‘within board’
(N1isN + 1;
N1lisN-1),
in(N1).
in(N) :-
N>0,N<9.
diagngb(X : Y, X1:Y1) :- % Diagonal neighbour squares

n(X, X1), n(Y, Y1).

verngb(X : Y, X:Y1) :-
n(Y, Y1).

horngb(X : Y, X1:Y) :- % Horizontal neighbour squares
n(X, X1).

% Vertical neighbour squares

GAME PLAYING 383

| ngb(S, S1) :- % Neighbour squares, first diagonal
‘ diagngb(S, S1);

horngb(S, S1);
verngb(S, S1).

end_of_game(Pos) :-
mate(Pos).

% Move-constraints predicates
% These are specialized move generators:
% move(MoveConstr, Pos, Move, NewPos)

move(depth < Max, Pos, Move, Posl) :-
depth(Pos, D),
D < Max, !.

move(depth = D, Pos, Move, Posl) :-
depth(Pos, D), !.

move(kingdiagfirst, w..W..R..B..D, W-W1, b.. W1..R..B..D1) :-

DlisD + 1,
ngb(W, W1), % ‘ngb’ generates diagonal moves first
not ngb(W1, B), % Must not move into check
W1 \==R. % Must not collide with rook

move(rookmove, w..W..Rx : Ry..B..D, Rx : Ry-R, b..W..R..B..D1) :-
DlisD + 1,
coord(I), % Integer between 1 and 8
(R=Rx:IR=1:Ry), % Move vertically or horizontally
R \== Rx : Ry, % Must have moved
not inway(Rx : Ry, W, R). % White king not in way

move(checkmove, Pos, R-Rx : Ry, Posl) :-
wr(Pos, R),
bk(Pos, Bx : By),
(Rx = Bx; Ry = By), % Rook and Black king in line
move(rookmove, Pos, R-Rx : Ry, Posl).

move(legal, w..P, M, P1) :-
(MC = kingdiagfirst; MC = rookmove),
move(MC, w..P, M, P1).

move(legal, b..W..R..B..D, B-B1, w..W..R..B1..D1) :-
DlisD + 1,
ngb(B, Bl),
not check(w..W..R..B1..D1).

legalmove(Pos, Move, Posl) :-
move(legal, Pos, Move, Posl).

384 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

check(_..W..Rx : Ry..Bx : By.._) :-
ngb(W, Bx : By);
(Rx = Bx; Ry = By),
Rx : Ry \== Bx : By,
not inway(Rx : Ry, W, Bx : By).

inway(S, S1, S1) :- I,

inway(X1:Y,X2:Y,X3:Y) :-
ordered(X1, X2, X3), !.

inway(X :Y1,X:Y2,X:Y3) :-
ordered(Y1, Y2, Y3).

ordered(N1, N2, N3) :-
N1 < N2, N2 < N3;
N3 < N2, N2 < N1.

coord(1). coord(2). coord(3). coord(4).
coord(S). coord(6). coord(7). coord(8).

% Goal predicates
true(Pos).
themtomove(b.._).

mate(Pos) :-
side(Pos, b),
check(Pos),
not legalmove(Pos, _, _).

stalemate(Pos) :-
side(Pos, b),
not check(Pos),
not legalmove(Pos, _, _).

newroomsmaller(Pos, RootPos) :-
room(Pos, Room),
room(RootPos, RootRoom),
Room < RootRoom.

rookexposed(Side..W..R..B...) :-
dist(W, R, D1),
dist(B, R, D2),
(Side=w, !, D1 >D2 + 1;
Side = b, !, D1 > D2).

okapproachedcsquare(Pos, RootPos) :-

okcsquaremdist(Pos, D1),
okcsquaremdist(RootPos, D2),
D1 < D2.

% King’s too close

% Not rook captured

% Black = ‘them’ to move

GAME PLAYING 385

okcsquaremdist(Pos, Mdist) :- % Manh. dist. between WK and critical square
wk(Pos, WK),
cs(Pos, CS), % Critical square
manhdist(WK, CS, Mdist).

rookdivides(_..Wx : Wy..Rx : Ry..Bx : By.._) :-
ordered(Wx, Rx, Bx), !;
\ ordered(Wy, Ry, By).

Ipatt(_.W..R..B..)) :- % L-pattern
manhdist(W, B, 2),
manhdist(R, B, 3).

okorndle(_..W..R.._, _..W1..R1..)) :-
dist(W, R, D),
dist(W1, R1, D1),
D =< D1.

roomgt2(Pos) :-
room(Pos, Room),
Room > 2.

our_king edge(_..X : Y..) :- % White king on edge

(X=1,5X=85Y=1,Y=28).

their_king edge(_..W..R.X:Y..)) - % Black king on edge
(X=1,5X=85Y=1101Y=238).
kings_close(Pos) :- % Distance between kings < 4

wk(Pos, WK), bk(Pos, BK),
dist(WK, BK, D),

D < 4.
rooklost(_..W..B..B...). % Rook has been captured
rooklost(b..W..R..B.._) :-
ngb(B, R), % Black king attacks rook
not ngb(W, R). % White king does not defend

dist(X :Y, X1:Y1, D) :-
absdiff(X, X1, Dx),
absdiff(Y, Y1, Dy),
max(Dx, Dy, D).

absdiff(A, B, D) :-

A>B, !, Dis A-B;
D is B-A.

% Distance in king moves

max(A, B, M) :-
A>=B,!|,M = A;
M = B.

386 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

manhdist(X : Y, X1 : Y1, D) = % Manhattan distance
absdiff(X, X1, Dx),
absdiff(Y, Y1, Dy),
D is Dx + Dy.

room(Pos, Room) :- % Area to which B. king is confined
wr(Pos, Rx : Ry),
bk(Pos, Bx : By),
(Bx < Rx, SideX is Rx — 1; Bx > Rx, SideX is 8 — Rx),
(By <Ry, SideY is Ry - 1; By > Ry, SideY is 8 — Ry),
Room is SideX * SideY, !;
Room is 64. % Rook in line with Black king

cs(—..W..Rx : Ry..Bx : By.._, Cx : Cy) :- % “Critical square’
(Bx <Rx,!,CxisRx - 1; CxisRx + 1),
(By <Ry, !, CyisRy - 1;Cy is Ry + 1).

% Display procedures

show(Pos) :-
nl,
coord(Y), nl,
coord(X),
writepiece(X : Y, Pos),
fail.

show(Pos) :-
side(Pos, S), depth(Pos, D),
nl, write(’Side= "), write(S),
write(’Depth= "), write(D), nl.

writepiece(Square, Pos) :-
wk(Pos, Square), !, write("W”);
wr(Pos, Square), !, write('R’);
bk(Pos, Square), !, write(’B’);
write(’.%).

showmove(Move) :-
nl, write(Move), nl.

Figure 15.10 Predicate library for king and rook vs. king.

Project

Consider some other simple chess endgame, such as king and pawn vs. king,
and write an ALO program (together with the corresponding predicate defini-
tions) to play this endgame.

GAME PLAYING 387

Summary

Two-person games fit the formalism of AND/OR graphs. AND/OR
search procedures can be therefore used to search game trees.

® The straightforward depth-first search of game trees is easy to program,
but is too inefficient for playing interesting games. In such cases, the
minimax principle, in association with an evaluation function and depth-
limited search, offers a more feasible approach.

® The alpha-beta algorithm is an efficient implementation of the minimax
principle. The efficiency of alpha-beta depends on the order in which
alternatives are searched. In the best case, alpha-beta in effect reduces
the branching factor of a game tree to its square root.

® Some refinements to the basic alpha-beta algorithm include: extending
the search until a quiescent position is reached, progressive deepening
and heuristic pruning.

® Numerical evaluation is a very restrictive form of applying game-specific
knowledge. A more knowledge-intensive approach to game playing
should provide for pattern-based knowledge. Advice Languages realize
such an approach, where knowledge is represented in terms of goals and
means of achieving goals.

® Programs written in this chapter are: an implementation of minimax and
alpha-beta, an interpreter for Advice Language 0, and an advice-table for
playing the king and rook vs. king chess endgame.

® Concepts introduced and discussed in this chapter are:
two-person, perfect-information games
game trees
evaluation function, minimax principle
static values, backed-up values
alpha-beta algorithm
progressive deepening, heuristic pruning, quiescence heuristics
horizon effect
Advice Languages
goals, constraints, piece-of-advice, advice-table

References

The minimax principle, implemented as the alpha-beta algorithm, is the most
popularly used approach to game-playing programs, in particular to chess
programs. The minimax principle was introduced by Shannon (1950). The
development of the alpha-beta technique had a rather complicated history
when several researchers independently discovered or implemented the
method or at least part of it. This interesting history is described by Knuth and

388 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Moore (1975) who also present a more compact formulation of the alpha-beta
algorithm using the ‘neg-max’ principle instead of minimax, and give a
mathematical analysis of its performance. The most comprehensive treatment
of several minimax-based algorithms and their analyses is Pearl (1984). There
is another interesting question regarding the minimax principle: knowing that
the static evaluation is only reliable to some degree, will the minimax
backed-up values be more reliable than the static values themselves? Pearl
(1984) has also collected results of mathematical analyses that pertain to this
question. Results on error propagation in minimax trees explain when and why
the minimax look-ahead is beneficial.

The collection of papers Bramer (1983) covers in depth several aspects of
computer game playing. Frey (1983) is a good collection of articles on com-
puter chess. On-going research on chess is published in the Advances in
Computer Chess series and in the ICCA journal.

The Advice Language approach to using pattern knowledge in chess was
introduced by Michie, and further developed in Bratko and Michie (1980a, b),
and Bratko (1982, 1984, 1985). The king and rook vs. king advice-program of
this chapter is a slight modification of the advice-table that was mathematically
proved correct in Bratko (1978). Van Emden (1982) has also programmed this
advice-table in Prolog.

Other interesting experiments in knowledge-intensive approach to chess
(as opposed to search-intensive approaches) include Berliner (1977), Pitrat
(1977) and Wilkins (1980).

Advances in Computer Chess Series (M. R. B. Clarke, ed.). Edinburgh Univer--
sity Press (Vols. 1-2), Pergamon Press (Vol. 3).

Berliner, H. J. (1977) A representation and some mechanisms for a problem
solving chess program. In: Advances in Computer Chess 1 (M. R. B. Clarke,
ed.). Edinburgh University Press.

Bramer, M. A. (1983, ed.) Computer Game Playing: Theory and Practice. Ellis
Horwood and John Wiley.

Bratko, I. (1978) Proving correctness of strategies in the AL1 assertional
language. Information Processing Letters 7: 223-230.

Bratko, I. (1982) Knowledge-based problem solving in AL3. In: Machine
Intelligence 10 (J. Hayes, D. Michie, J. H. Pao, eds.). Ellis Horwood (an
abbreviated version also appears in Bramer 1983).

Bratko, 1. (1984) Advice and planning in chess end-games. In: Atrtificial and
Human Intelligence (S. Amarel, A. Elithorn, R. Banerji, eds.). North-
Holland.

Bratko, I. (1985) Symbolic derivation of chess patterns. In: Progress in Artifi-
cial Intelligence (L. Steels, J. A. Campbell, eds.). Ellis Horwood and John
Wiley.

GAME PLAYING 389

Bratko, I. and Michie, D. (1980a) A representation of pattern-knowledge in
chess endgames. In: Advances in Computer Chess 2 (M. R. B. Clarke, ed.).
Edinburgh University Press.

Bratko, I. and Michie, D. (1980t) An advice program for a complex chess
programming task. Computer Journal 23: 353-359.

Frey, P. W. (1983, ed.) Chess Skill in Man and Machine (second edition).
Springer-Verlag.

Knuth, D. E. and Moore, R. W. (1975) An analysis of alpha-beta pruning.
Atrtificial Intelligence 6: 293-326.

Pearl, J. (1984) Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley.

Pitrat, J. (1977) A chess combination program which uses plans. Artificial
Intelligence 8: 275-321.

Shannon, C. E. (1950) Programming a computer for playing chess. Philosophi-
cal Magazine 41: 256-275.

van Emden, M. (1982) Chess end-game advice: a case study in computer
utilisation of knowledge. In: Machine Intelligence 10 (J. Hayes, D. Michie, J.
H. Pao, eds.). Ellis Horwood.

Wilkins, D. E. (1980) Using patterns and plans in chess. Artificial Intelligence
14: 165-203.

1 6 Pattern-directed

Programming

In this chapter we will consider pattern-directed systems as a special approach
to programming. Prolog itself can be viewed as a pattern-directed language.
We will implement a small interpreter for simple pattern-directed programs
and illustrate the flavour of pattern-directed programming with examples.

16.1 Pattern-directed architecture

16.1.1 Main concepts

By pattern-directed systems we here refer to an architecture for program
systems. This architecture is better suited for certain types of problems than
conventional systems organization. Among problems that naturally fit into the
pattern-directed architecture are many Artificial Intelligence applications — for
example, expert systems. The main difference between conventional systems
and pattern-directed systems is in the mechanisms of invocation of program
modules. In conventional organization, modules of the system call each other
according to a fixed, explicitly predefined scheme. Each program module
decides which module will be executed next by explicitly calling other modules.
The corresponding flow of execution is sequential and deterministic.

In contrast to this, in pattern-directed organization the modules of the
system are not directly called by other modules. Instead, they are ‘called’ by
patterns that occur in their ‘data environment’. Therefore such modules are
called pattern-directed modules. A pattern-directed program is a collection of
pattern-directed modules. Each module is defined by:

(1) a precondition pattern, and
(2) an action to be executed if the data environment matches the pattern.

The execution of program modules is triggered by patterns that occur in the
system’s environment. The data environment is usually called the database. We
can imagine such a system as shown in Figure 16.1.

There are some notable observations about Figure 16.1. There is no
hierarchy among modules, and there is no explicit indication about which
module can invoke some other module. Modules communicate with the

390

|

PATTERN-DIRECTED PROGRAMMING 391

Data environment

Figure 16.1 A pattern-directed system.

database rather than with other modules directly. The structure itself, in
principle, permits execution of several modules in parallel, since the state of
the database may simultaneously satisfy several preconditions and thus, in
principle, fire several modules at the same time. Consequently such an orga-
nization can also serve as a natural model of parallel computation in which each
module would be physically implemented by its own processor.
Pattern-directed architecture has certain advantages. One major advan-
tage is that the design of the system does not require all the connections
between modules to be carefully planned and defined in advance. Conse-
quently, each module can be designed and implemented relatively
autonomously. This renders a high degree of modularity. The modularity is
manifested, for example, in that the removal of some module from the system
is not necessarily fatal. After the removal, the system would often still be able
to solve problems, only the way of solving problems might change. The same is
true for the addition of new modules and for modifications of the existing
modules. If similar modifications are carried out in systems with conventional
organization, at least the calls between modules have to be properly modified.
The high degree of modularity is especially desirable in systems with
complex knowledge bases because it is difficult to predict in advance all the
interactions between individual pieces of knowledge in the base. The pattern-
directed architecture offers a natural solution to this: each piece of knowledge,
represented by an if-then rule, can be regarded as a pattern-directed module.
Let us further elaborate the basic scheme of pattern-directed systems
with the view on an implementation. Figure 16.1 suggests that the parallel
implementation would be most natural. However, let us assume the system is
to be implemented on a traditional sequential processor. Then in a case that the

392 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Conflict
set

Module 1 Condition] —— > Action 1
Module2 Condition 2 ————p] 20 § Action?2

£ |
Module 3 Condition 3 ———p»1 é > % —> Action3 ———~

= S
Module4 Condition4 ———— S > = Action4

& S _
Module5 Condition5 =———1 Action 5

Database < J

Figure 16.2 The basic life cycle of pattern-directed systems. In this example the
database satisfies the condition pattern of modules 1, 3 and 4; module 3 is chosen for
execution.

triggering patterns of several modules simultaneously occur in the database
there is a conflict: which of all these potentially active modules will actually be
executed? The set of potentially active modules is called a conflict set. In an
actual implementation of the scheme of Figure 16.1 on a sequential processor,
we need an additional program module, called the control module. The control
module resolves the conflict by choosing and activating one of the modules in
the conflict set. One simple rule of resolving conflicts can be based on a
predefined, fixed ordering of modules.

The basic life cycle of pattern-directed systems, then, consists of three
steps:

(1) Pattern matching: find in the database all the occurrences of the condition
patterns of the program modules. This results in a conflict set.

(2) Conflict resolution: choose one of the modules in the conflict set.
(3) Execution: execute the module that was chosen in step 2.

This implementational scheme is illustrated in Figure 16.2.
16.1.2 Prolog programs as pattern-directed systems

Prolog programs themselves can be viewed as pattern-directed systems.
Without much elaboration, the correspondence between Prolog and pattern-

o

PATTERN-DIRECTED PROGRAMMING 393

directed systems is along the following lines:

e Each Prolog clause in the program can be viewed as a pattern-directed
module. The module’s condition part is the head of the clause, the action
part is specified by the clause’s body.

e The system’s database is the current list of goals that Prolog is trying to
satisfy.

A clause is fired if its head matches the first goal in the database.

To execute a module’s action (body of a clause) means: replace the first
goal in the database with the list of goals in the body of the clause (with
the proper instantiation of variables).

e The process of module invocation is non-deterministic in the sense that
several clauses’ heads may match the first goal in the database, and any
one of them can, in principle, be executed. This non-determinism is
actually implemented in Prolog through backtracking.

16.1.3 Writing pattern-directed programs: an example

Pattern-directed systems can also be viewed as a particular style of writing
programs and thinking about problems, called pattern-directed programming.

To illustrate this, consider an elementary programming exercise: com-
puting the greatest common divisor D of two integer numbers A and B. The
classical Euclid’s algorithm can be written as follows:

To compute the greatest common divisor, D, of A and B:

While A and B are not equal, repeat the foﬂcwing:

if A > B then replace A with A - B
else replace B with B - A.

When this loop is over, A and B are equal; now the greatest
common divisor D is A (or B). . -
We can define the same process by two pattern-directed modules:

Module 1
Condition There are two numbers X and Y in the database such that X >

Y.
Action Replace X in the database with the difference X - Y.
Module 2
Condition There is a number X in the database.
Action Output X and stop.

Obviously, whenever the condition of Module 1 is satisfied, so is the condition
of Module 2 and we have a conflict. This will be in our case resolved by a simple

394 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

control rule: Module 1 is always preferred to Module 2. Initially the database
contains the two numbers A and B.

As a pleasant surprise, our pattern-directed program in fact solves a more
general problem: computing the greatest common divisor of any number of
integers. If several integers are stored in the database the system will output the
greatest common divisor of all of them. Figure 16.3 shows a possible sequence
of changes in the database before the result is obtained, when the initial
database contains four numbers: 25,10, 15, 30. Notice that a module’s precon-
dition can be satisfied at several places in the database.

7NN
AN
l

Figure 16.3 A possible execution of the pattern-directed program for computing the
greatest common divisor of a set of numbers. In this example the database initially
contains the numbers 25, 10, 15 and 30. Vertical arrows connect numbers with their
replacements. The final state of the database is: 5,5,5,5.

We will in this chapter implement an interpreter for a simple language for
specifying pattern-directed systems, and illustrate the flavour of pattern-
directed programming by programming exercises.

16.2 A simple interpreter for pattern-directed programs
Let us choose the following syntax for specifying pattern-directed modules:
ConditionPart ---> ActionPart
The condition part is a list of conditions
[Condl, Cond2, Cond3, ...]

where Condl, Cond2, etc. are simply Prolog goals. The precondition is

PATTERN-DIRECTED PROGRAMMING 395

satisfied if all the goals in the list are satisfied. The action part is a list of actions:
[Actionl, Action2, ...]

Each action is, again, simply a Prolog goal. To execute an action list, all the
actions in the list have to be executed. That s, all the corresponding goals have
to be satisfied. Among available actions there will be actions that manipulate
the database: add, delete or replace objects in the database.

Figure 16.4 shows our pattern-directed program for computing the
greatest common divisor written in this syntax.

The simplest way to implement this pattern-directed language is to use
Prolog’s own built-in database mechanism. Adding an object into the database
and deleting an object can be accomplished simply by the built-in procedures:

assert(Object) retract(Object)
Replacing an object with another object is also easy:
replace(Object1, Object2) :-
retract(Objectl), !,
assert(Object2).

The cut in this clause is used just to prevent retract from deleting (through
backtracking) more than one object from the database.

% Production rules for finding greatest common divisor (Euclid algorithm)

:- op(300, fx, number).

[number X, number Y, X > Y] --->
[NewX is X - Y, replace(number X, number NewX)]

[number X] ---> [write(X), stop].

% An initial database
number 25.
number 10.
number 15.
number 30.

Figure16.4 A pattern-directed program to find the greatest common divisor of a set of
numbers.

3% PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% A small interpreter for pattern-directed programs
% The system’s database is manipulated through assert/retract

- op(800, xfx, --->).

run :-
Condition ---> Action, % A rule
test(Condition), % Precondition satisfied?
execute(Action).
test([]). % Empty condition
test([First | Rest]) :- % Test conjunctive condition
call(First),
test(Rest).
execute([stop]) :- . % Stop execution
execute([]) :- % Empty action (execution cycle completed)
run. % Continue with next execution cycle

execute([First | Rest]) :-
call(First),
execute(Rest).

replace(A, B) :- % Replace A with B in database
retract(A), !,
assert(B).

Figure 16.5 A small interpreter for pattern-directed programs.

A small interpreter for pattern-directed programs along these lines is
shown in Figure 16.5. This interpreter is perhaps an oversimplification in some
respects. In particular, the conflict resolution rule in the interpreter is
extremely simple and rigid: always execute the first potentially active pattern-
directed module (in the order as they are written). So the programmer’s control
is reduced just to the ordering of modules. The initial state of the database for
this interpreter has to be asserted as Prolog clauses. Then the execution is
triggered by the goal:

?- run.

16.3 A simple theorem prover

Let us implement a simple theorem prover as a pattern-directed system. The
prover will be based on the resolution principle, a popular method for mechani-

PATTERN-DIRECTED PROGRAMMING 397

cal theorem proving. We will limit our discussion to only proving theorems in
the simple propositional logic just to illustrate the principle, although our
resolution mechanism will be easily extendable to handle the first-order predi-
cate calculus (logic formulas that contain variables). Basic Prolog itself is a
special case of such a theorem prover.

The theorem-proving task can be defined as: given a formula, show that
the formula is a theorem; that is, the formula is always true regardless of the
interpretation of the symbols that occur in the formula. For example, the
formula

pv-~p

read as ‘p or not p’, is always true regardless of the meaning of p.
We will be using the following symbols as logic operators:

negation, read as ‘not’
conjunction, read as ‘and’
disjunction, read as ‘or’

> implication, read as ‘implies’

< &

The precedence of these operators is such that ‘not’ binds strongest, then ‘and’,
then ‘or’, and then ‘implies’.

In the resolution method we negate the conjectured theorem and then try
to show that this negated formula is a contradiction. If the negated formulais in
fact a contradiction then the original formula must be a tautology. Thus the
idea is: demonstrating that the negated formula is a contradiction is equivalent
to proving that the original formula is a theorem (always holds). The process
that aims at detecting the contradiction consists of a sequence of resolution
steps.

Let us illustrate the principle with a simple example. Suppose we want to
prove that the following propositional formula is a theorem:

(a=>b)& (b=>c)=>(a=>c)

This formula is read as: if b follows from a, and c follows from b, then ¢ follows
from a.

Before the resolution process can start we have to get our negated,
conjectured theorem into a form that suits the resolution process. The suitable
form is the conjunctive normal form, which looks like this:

(p,vp,v..)&(qvgv.)& vrv..)&..

Here all p’s, ¢’s and r’s are simple propositions or their negations. This form is
also called the clause form. Each conjunct is called a clause. So (p, vp,v ...)isa
clause.

We can easily transform any propositional formula into this form. For our

398 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

example theorem, this transformation can proceed as follows. The theorem is
(@a=>b)& (b=>c) => (a=>c)

The negated theorem is:
~((@=>b)&(b=>c)=>@@=>c))

The following known equivalence rules will be useful when transforming this
formula into the normal conjunctive form:

1) x=>y is equivalent to ~XVYy
2 ~(xvy) is equivalent to ~x & ~y
(3) ~(x&y) isequivalent to ~XV -~y
“4) ~(~x) is equivalent to x

Applying rule 1 to our formula we get:
~(~((@=>b)&(b=>c))v(@a=>c))
By rules 2 and 4 we get:
(@=>b)& (b=>c) & ~(a=>¢)
Using rule 1 at several places we get:
(~avb)& (~bvc)& ~(~avc)
By rule 2 we finally get the clause form we need:
(~avb)& (~bvc)&a & ~c
This consists of four clauses. Now the resolution process can start.
The basic resolution step can occur any time that there are two clauses
such that some proposition p occurs in one of them, and ~p occurs in the other.

Let two such clauses be:

pvY and ~pvZ

where p is a proposition, and Y and Z are propositional formulas. Then the
resolution step on these two clauses produces a third clause:

YvZ

It can easily be shown that this clause logically follows from the two initial
clauses. So by adding the expression (Y v Z) to our formula we do not alter the

PATTERN-DIRECTED PROGRAMMING 399

~avb ~bvc a ~c
\ /
~avc
\
c
\
nil

Figure 16.6 Proving the theorem (a => b) & (b => ¢) => (a => ¢) by the resolution
method. The top line is the negated theorem in the clause form. The empty clause at the
bottom signals that the negated theorem is a contradiction.

validity of the formula. The resolution process thus generates new clauses. If
the ‘empty clause’ (usually denoted by ‘nil’) occurs then this will signal that a
contradiction has been found. The empty clause nil is generated from two
clauses of the forms:

x and ~x

which is obviously a contradiction.

Figure 16.6 shows the resolution process that starts with our negated
conjectured theorem and ends with the empty clause.

Figure 16.7 shows how this resolution process can be formulated as a
pattern-directed program. This program operates on clauses asserted into the
database. The resolution principle can be formulated as a pattern-driven
activity:
if

there are two clauses CI and C2, such that P is a (disjunctive) subexpres-

sion of CI, and ~P is a subexpression of C2
then

remove P from CI (giving CA), remove ~P from C2 (giving CB), and add
into the database a new clause: CA v CB.

Written in our pattern-directed language this becomes:

[clause(C1), delete(P, C1, CA),
clause(C2), delete(~P, C2, CB) | --->
[assert(clause(CA v CB))].

This rule needs a little elaboration to prevent repeated actions on the same
clauses, which would merely produce new copies of already existing clauses.
The program in Figure 16.7 records into the database what has already been
done by asserting:

done(C1, C2, P)

400 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

The condition parts of rules will then recognize and prevent such repeated
actions.

The rules in Figure 16.7 also deal with some special cases that would
otherwise require the explicit representation of the empty clause. Also, there
are two rules that just simplify clauses when possible. One of these rules

removes redundant subexpressions. For example, this rule would simplify the
clause

avbva
into a v b. The other rule recognizes true clauses such as
avbv~q

and removes them from the database since they are useless for detecting a
contradiction.
A remaining question is how to translate a given propositional formula

into the clause form. This is not difficult and the program of Figure 16.8 does it.
The procedure

translate(Formula)

translates a formula into a set of clauses C1, C2, etc., and asserts these clauses
into the database as:

clause(C1).
clause(C2).

Now the pattern-directed theorem prover can be triggered by the goal run. So,
to prove a conjectured theorem using these programs, we translate the negated
theorem into the clause form and start the resolution process. For our example
theorem, this is done by the question:

?- translate(~((a=>b)& (b=>c¢)=>(a=>c))), run.

The program will respond with ‘Contradiction found’ meaning that the original
formula is a theorem.

% Production rules for resolution theorem proving

% Contradicting clauses

[clause(X), clause(~X)] --->
[w_rite(’Contradiction found’), stop].

PATTERN-DIRECTED PROGRAMMING

% Remove a true clause

[clause(C), in(P, C), in(~P, C)] --->
[retract(C) |.

% Simplify a clause

[clause(C), delete(P, C, C1), in(P, C1)] --->
[replace(clause(C), clause(C1))].

% Resolution step, a special case

[clause(P), clause(C), delete(~P, C, C1), not done(P, C, P)] --->
[assert(clause(C1)), assert(done(P, C, P))].

% Resolution step, a special case

[clause(~P), clause(C), delete(P, C, C1), not done(~P, C, P) | --->
[assert(clause(C1)), assert(done(~P, C, P))].

% Resolution step, general case

[clause(C1), delete(P, C1, CA),
clause(C2), delete(~P, C2, CB), not done(C1, C2, P) | --->
[assert(clause(CA v CB)), assert(done(C1, C2, P))].

% Last rule: resolution process stuck

[1 ---> [write(’Not contradiction’), stop].

% delete(P, E, E1) means: delete a disjunctive subexpression P from E giving E1

delete(X, X Vv Y, Y). -
delete(X, Y v X, Y).

delete(X, YVZ,YVZ1) :-
delete(X, Z, Z1).

delete(X, YVZ,Y1vVvZ) :-
delete(X, Y, Y1).

% in(P, E) means: P is a disjunctive subexpression in E
in(X, X).

in(X, Y) :-
delete(X, Y,).

401

Figure 16.7 A pattern-directed program for simple resolution theorem proving.

402 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

% Translating a propositional formula into (asserted) clauses

= op(100, fy, ~). % Negation

- op(110, xfy, &). % Conjunction

- op(120, xfy, v). % Disjunction

- op(130, xfy, =>). % Implication

translate(F & G) :- !, % Translate conjunctive formula

translate(F),
translate(G).

translate(Formula) :-

transform(Formula, NewFormula), !, % Transformation step on Formula

translate(NewFormula).

translate(Formula) :- % No more transformation possible

assert(clause(Formula)).

% Transformation rules for propositional formulas
transform(~(~X), X) :- L

transform(X >=Y, ~XvY) :- !

transform(~(X & Y), ~Xv ~Y) :- L
transform(~(XvY), ~X & ~Y) :- L.
transform(X & YVZ, (XvZ)& (YVvZ)) - .
transform(X vY & Z, (XvY) & (XvZ)) - L

transform(X vY, X1vY) :-
transform(X, X1), !.

transform(XvY, XvYl) :-
transform(Y, Y1), !.

transform(~X, ~X1) :-
transform(X, X1).

% Double negation

% Eliminate implication
% De Morgan’s law

% De Morgan’s law

% Distribution

% Distribution

% Transform subexpression

% Transform subexpression

% Transform subexpression

Figure 16.8 Translating a propositional calculus formula into a set of (asserted)

clauses.

16.4 Concluding remarks

Our simple interpeter for pattern-directed programs was sufficient for illustrat-
ing some ideas of pattern-directed programming. For more complex
applications it should be elaborated in several respects. Here are some critical
comments and indications for improvements.

PATTERN-DIRECTED PROGRAMMING 403

The conflict resolution was in our interpreter reduced to a fixed, pre-
defined order. Much more flexible schemas are often desired. To enable more
sophisticated control, all the potentially active modules should be found and
fed into a special user-programmable control module.

When the database is large and there are many pattern-directed modules
in the program then pattern matching can become extremely inefficient. The
efficiency in this respect can be improved by a more sophisticated organization
of the database. This may involve the indexing of the information in the
database, or partition of the information into sub-bases, or partition of the set
of pattern-directed modules into subsets. The idea of partitioning is to make
only a subset of the database or of the modules accessible at any given time,
thus reducing the pattern matching to such a subset only. Of course, in such a
case we would need a more sophisticated control mechanism that would
control the transitions between these subsets in the sense of activating and
de-activating a subset. A kind of meta-rules could be used for that.

Unfortunately our interpreter, as programmed, precludes any backtrack-
ing due to the way that the database is manipulated through assert and retract.
So we cannot study alternative execution paths. This can be improved by using
a different implementation of the database, avoiding Prolog’s assert and
retract. One way would be to represent the whole state of the database by a
Prolog term passed as an argument to the run procedure. The simplest
possibility is to organize this term as a list of objects in the database. The
interpreter’s top level could then look like this:

run(State) :-
Condition ---> Action,
test(Condition, State),
execute(Action, State).

The execute procedure would then compute a new state and call run with this
new state.

Project

Implement an interpreter for pattern-directed programs that does not maintain
its database as Prolog’s own internal database (with assert and retract), but as a
procedure argument according to the foregoing remark. Such a new interpreter
would allow for automatic backtracking. Try to design a representation of the
database that would facilitate efficient pattern matching.

Summary

® Pattern-directed architecture suits many problems of Artificial
Intelligence.

404 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

® A pattern-directed program is a collection of pattern-directed modules
whose execution is triggered by patterns in the ‘database’.

Prolog programs themselves can be viewed as pattern-directed systems.

The parallel implementation of pattern-directed systems would be most
natural. The sequential implementation requires conflict resolution
among the modules in the conflict set.

® A simple interpreter for pattern-directed programs was implemented in
this chapter and applied to resolution-based theorem proving in proposi-
tional logic.

® Concepts discussed in this chapter are:

pattern-directed systems, pattern-directed architecture
pattern-directed programming

pattern-directed module

conflict set, conflict resolution

resolution-based theorem proving, resolution principle

References

Waterman and Hayes-Roth (1978) is the classical book on pattern-directed
systems. Fundamentals of mechanical theorem proving can be found in Nilsson
(1980), including the algorithm for transforming the first-order predicate
calculus formulas into the clausal form. Clocksin and Mellish (1981) give a
Prolog program that does this transformation.

Clocksin, F. W. and Mellish, C. S. (1981) Programming in Prolog. Springer-
Verlag.

Nilsson, N. J. (1980) Principles of Artificial Intelligence. Tioga; also Springer-
Verlag.

Waterman, D. A. and Hayes-Roth, F. (1978, eds.) Pattern-Directed Inference
Systems. Academic Press.

Solutions to Selected Exercises

Chapter 1

1.1 (a) no
(b) X = pat
(c) X =bob

(d) X =bob, Y = pat

1.2 (a) ?- parent(X, pat).
(b) ?- parent(liz, X).
(c) ?- parent(Y, pat), parent(X, Y).

1.3 (a) happy(X) :-
parent(X, Y).

(b) hastwochildren(X) :-

parent(X, Y),
sister(Z, Y).

1.4 grandchild(X, Z) :-
parent(Y, X),
parent(Z, Y).

1.5 aunt(X, Y) :-

parent(Z, Y),
sister(X, Z).

1.6 Yesitis.

1.7 (a) no backtracking
(b) no backtracking
(c) no backtracking
(d) backtracking

Chapter 2

2.1 (a) variable
(b) atom

405

406 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

(©)
(d)
(e)
(®
(g)
(h)
O]
()
2.3 (a)
(b)
(©)
(d)
(e)

atom

variable

atom

structure

number

syntactically incorrect
structure

structure

yes

no

no

D=2E=2

P1 = point(-1,0)

P2 = point(1,0)

P3 = point(0,Y)

This can represent the family of triangles with two vertices on the
x-axis at 1 and -1 respectively, and the third vertex anywhere on the
y-axis.

2.4 seg(point(5,Y1), point(5,Y2))

2.5 regular(rectangle(point(X1,Y1), point(X2,Y1), point(X2,Y3),
point(X1,Y3))).

% This assumes that the first point is the left bottom vertex

2.6 (a)
3

Ale
(d)

A=2

no

c=7

D = s(s(1));

D = s(s(s(s(s(1)))))

2.7 relatives(X, Y) :-
predecessor(X, Y);
predecessor(Y, X);
predecessor(Z, X),
predecessor(Z, Y);
predecessor(X, Z),
predecessor(Y, Z).

2.8 translate(1, one).
translate(2, two).
translate(3, three).

2.9 In the case of Figure 2.10 Prolog does slightly more work.

2.10 According to the definition of matching of Section 2.2, this succeeds. X
becomes a sort of circular structure in which X itself occurs as one of the

arguments.

SOLUTIONS TO SELECTED EXERCISES 407

Chapter 3
3.1 (a) comc(L1, [, -, _],L)
(b) conc([-, -, -], L1, L), % Delete first three elements from L
conc(L2, [, -, -], L1) % Delete last three from L1

3.2

3.3

34

3.5

3.6

3.7

(a) last(Item, List) :-
conc(—, [Item], List).

(b) Ilast(Item, [Item]).
last(Item, [First | Rest]) :-
last(Item, Rest).
evenlength([]).

evenlength([First | Rest]) :-
oddlength(Rest).

oddlength([-]).

oddlength([First | Rest]) :-
evenlength(Rest).

reverse([], []).

reverse([First | Rest], Reversed) :-
reverse(Rest, ReversedRest),
conc(ReversedRest, [First], Reversed).

% This is easy using reverse
palindrome(List) :-

reverse(List, List).
% Alternative solution, not using reverse
palindromel([]).

palindromel([_]).

palindromel([First | Rest]) :-
conc(Middle, [First], Rest),
palindromel(Middle).

shift([First | Rest], Shifted) :-
conc(Rest, [First], Shifted).

translate([], []).

translate([Head | Tail], [Headl | Taill]) :-
means(Head, Head1),
translate(Tail, Taill).

408

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

subset([], [1).

subset([First | Rest], [First | Sub]) :- % Retain First in subset
subset(Rest, Sub).
subset([First | Rest], Sub) :- % Remove First
subset(Rest, Sub). ~
dividelist([], [], [1)- ' % Nothing to divide
dividelist([X], [X], []). % Divide one-element list

dividelist([X, Y | List], [X | List1], [Y | List2]) :-
dividelist(List, List1, List2).

canget(state(_, _, _, has), []). % Nothing to do
canget(State, [Action | Actions]) :-
move(State, Action, NewState), % First action
canget(NewState, Actions). % Remaining actions
flatten([Head | Tail], FlatList) :- % Flatten non-empty list
flatten(Head, FlatHead),
flatten(Tail, FlatTail),
conc(FlatHead, FlatTail, FlatList).
flatten([], [1). % Flatten empty list
flatten(X, [X]). % Flatten a non-list
% Note: On backtracking this program produces rubbish
Term1 = plays(jimmy, and(football, squash))

Term2 = plays(susan, and(tennis, and(basketball, volleyball)))

- op(300, xfx, was).
- op(200, xfx, of).
- op(100, fx, the).

@ A=1+4+0

(b) B =1+1+0

(c) C=1+1+1+14+0
(d D=1+1+0+1

- op(100, xfx, in).

:- op(300, fx, concatenating).
- op(200, xfx, gives).

- op(100, xfx, and).

- op(300, fx, deleting).

- op(100, xfx, from).

3.16

3.17

3.18

3.19

3.20

3.21

SOLUTIONS TO SELECTED EXERCISES 409

% List membership

Item in [Item | List].

Item in [First | Rest] :-
Item in Rest.

% List concatenation

concatenating [] and List gives List.

concatenating [X | L1] and L2 gives [X | L3] :-
concatenating L1 and L2 gives L3.

% Deleting from a list

deleting Item from [Item | Rest] gives Rest.

deleting Item from [First | Rest] gives [First | NewRest] :-
deleting Item from Rest gives NewRest.

max(X, Y, X) :-
X>=Y.

max(X, Y,Y) :-
X<Y.

maxlist([X], X). % Maximum of single-element list

maxlist([X, Y | Rest], Max), % At least two elements in list
maxlist([Y | Rest], MaxRest),

max(X, MaxRest, Max). % Max is the greater of X and MaxRest

sumlist([], 0).

sumlist([First | Rest], Sum) :-
sumlist(Rest, SumRest),
Sum is First + SumRest.

ordered([X]). % Single-element list is ordered
ordered([X, Y | Rest]) :-

X=<Y,

ordered([Y | Rest]).

subsum([}, 0, []).

subsum([N | List], Sum, [N | Sub]) :- % N is in subset
Sum1 is Sum - N,

subsum(List, Sum1, Sub).

subsum([N | List], Sum, Sub) :- % N is not in subset
subsum(List, Sum, Sub).

between(N1, N2, N1) :-
N1 =< N2.

410 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

between(N1, N2, X) :-
N1 < N2,
NewN1is N1 + 1,
between(NewN1, N2, X).

3.22 :- op(900, fx, if).
:~ op(800, xfx, then).
- op(700, xfx, else).
= op(600, xfx, :=).

if Vall > Val2 then Var := Val3 else Anything :-
Vall > Val2,
Var = Val3.

if Vall > Val2 then Anything else Var := Val4 :-
Vall =< Val2,
Var = Val4.

Chapter 4

4.1 (a) ?- family(person(_, Name, _,), _, []).
(b) ?- child(person(Name, SecondName, _, works(_, _))).

(c) ?- family(person(-, Name, _, unemployed),
person(_, _, _, works(_, _)).

(d) ?- family(Husband, Wife, Children),
dateofbirth(Husband, date(_, _, Yearl)),
dateofbirth(Wife, date(_, _, Year2)),

(Yearl - Year2 >= 15;
Year2 - Yearl >=15),
member(Child, Children).

4.2 twins(Child1, Child2) :-
family(_, _, Children), .
del(Child1, Children, OtherChildren), % Delete Childl
member(Child2, OtherChildren),
dateofbirth(Child1, Date),
dateofbirth(Child2, Date).

4.3 nth member(1, [X | L], X). % X is first element of list [X | L]
nth_member(N, [Y | L], X) :- % X is nth element of [Y | L]
NlisN-1,

nth_member(N1, L, X).

4.4 The input string shrinks on each non-silent cycle, and it cannot shrink
indefinitely.

4.5 accepts(S,[],-) :-
final(S).

accepts(S, [X | Rest], MaxMoves) :-

MaxMoves > 0,

trans(S, X, S1),

NewMax is MaxMoves — 1,
accepts(S1, Rest).

accepts(S, String, MaxMoves) :-
MaxMoves > 0,
silent(S, S1),
NewMax is MaxMoves — 1,
accepts(S1, String, NewMax).

4.7 (a) jump(X/Y, X1/Y1) :-
(dxy(Dx, Dy);
dxy(Dy, Dx)),
X1is X + Dx,
inboard(X1),
Y1lis Y + Dy,
inboard(Y1).

dxy(2, 1).
dxy(2, -1).
dxy(-2, 1).
dxy(-2, -1).

inboard(Coord) :-
0 < Coord,
Coord < 9.

(b) knightpath([Square]).

knightpath([S1, S2 | Rest]) :-

jump(S1, S2),
knightpath([S2 | Rest]).

(c) ?- knightpath([2/1,R,5/4,S,X/8]).

SOLUTIONS TO SELECTED EXERCISES 411

% Knight jump from X/Y to X1/Y1
% Knight distances in x and y directions
% or the other way round

% X1 is within chessboard

% Y1 is within chessboard

% 2 squares to right, 1 forward
% 2 squares to right, 1 backward
% 2 to left, 1 forward

% 2 to left, 1 backward

% Coordinate within chessboard

% Knight sitting on Square

412

5.2

5.3

54

5.5

5.6

PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

X=2
Y =1;
X=2
Y =2;
o) X=1
Y=1;
X=1
Y =2;

class(Number, positive) :-
Number > 0, !.

class(0, zero) :- !.

class(Number, negative).

split((1, [1, [1)-

split([X | L], [X | L1], L2) :-
X>=0,!,
split(L, L1, L2).

split([X | L], L1, [X | L2]) :-
split(L, L1, L2).

member(Item, Candidates), not member(Item, RuledOut)

difference([, -, []).

difference([X | L1}, L2, L) :-
member(X, L2), !,
difference(L1, L2, L).

difference([X | L1], L2, [X | L]) :-
difference(L1, L2, L).

unifiable([], _, []).

unifiable([First | Rest], Term, List) :-
not(First = Term), !,
unifiable(Rest, Term, List).

unifiable([First | Rest], Term, [First | List]) :-
unifiable(Rest, Term, List).

Chapter 6

6.1 findterm(Term) :-
read(Term), !,
write(Term);
findterm(Term).

6.2 findallterms(Term) :-
read(CurrentTerm),

process(CurrentTerm, Term).

process(end_of_file,) :- !.

process(CurrentTerm, Term) :-
(not(CurrentTerm = Term), !;

write(CurrentTerm), nl),
findallterms(Term).

6.4 starts(Atom, Character) :-
name(Character, [Code]),
name(Atom, [Code | _]).

6.5 plural(Noun, Nouns) :-
name(Noun, CodeList),
name(s, CodeS),

SOLUTIONS TO SELECTED EXERCISES 413

% Assuming current input stream is file f
% Current term in f matches Term?

% If yes, display it

% Otherwise process the rest of file

% Terms do not match
% Otherwise output current term
% Do the rest of file

conc(CodeList, CodeS, NewCodeList),

name(Nouns, NewCodeList).

Chapter 7

7.1 sum(X, Y, Sum) :-
var(Sum), !,
Sumis X + Y;

var(X), !,
X is Sum - Y;
Y is Sum - X.

7.2 add(Item, List) :-
var(List), !,

List = [Item | Tail].

add(Item, [| Tail]) :-
add(Item, Tail).

member(X, List) :-
var(List), !,
fail.

member(X, [X | Tail]).

member(X, [| Tail]) :-
member(X, Tail).

% Sum uninstantiated
% X uninstantiated

% Y uninstantiated

% List represents empty list

% List represents empty list
% so X cannot be a member

414 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

Chapter 8

8.2 add.at_end(L1 - [Item | Z2], Item, L1 - Z2).

8.3 reverse(A-Z,L-L) :- % Result is empty list if
==1Z,. % A - Z represents empty list
reverse([X | L]-Z, RL-RZ) :- % Non-empty list

reverse(L - Z, RL - [X | RZ]).

Chapter 9

9.1 list([]).
list([- | Tail]) :-
list(Tail).
9.2 mem(X, X then Anything).
mem(X, Y then List) :-
mem(X, List).
9.3 convert([], donothing).

convert([First | Tail], First then Rest) :-
convert(Tail, Rest).

9.4 convert([], EmptyList, _, EmptyList). % Convert empty list

convert([First | Tail], NewList, Functor, Empty) :-
NewList =.. [Functor, First, NewTail],
convert(Tail, NewTail, Functor, Empty).

9.8 msort([], []).

msort([X], [X]).

msort(List, SortedList) :-
divide(List, List1, List2), % Divide into approx. equal lists
msort(List1l, Sorted1),
msort(List2, Sorted2),
merge(Sorted1, Sorted2, Sorted). % Merge sorted lists

divide((], (1, [1).

divide([X], [X], [1).

divide([X, Y | L], [X | L1], [Y | L2]) :- % Put X, Y into separate lists
divide(L, L1, L2).

9.9

9.10

9.11

9.12

9.13

9.14

SOLUTIONS TO SELECTED EXERCISES 415

(a) binarytree(nil).

binarytree(t(Left, Root, Right)) :-
binarytree(Left),
binarytree(Right).
height(nil, 0).
height(t(Left, Root, Right), H) :-
height(Left, LH),
height(Right, RH),
max(LH, RH, MH),
His 1+ MH.

max(A, B, A) :-
A>=B, .

max(A, B, B).

linearize(nil, []).

linearize(t(Left, Root, Right), List) :-
linearize(Left, List1),
linearize(Right, List2),
conc(List1, [Root | List2], List).

maxelement(t(_, Root, nil), Root) :- !. % Root is right-most element

maxelement(t(-, _, Right), Max) :- % Right subtree non-empty
maxelement(Right, Max).

in(Item, t(_, Item, _), [Item]).

in(Item, t(Left, Root, _), [Root | Path]) :-
gt(Root, Item),
in(Item, Left, Path).

in(Item, t(_, Root, Right), [Root | Path]) :-
gt(Item, Root),
in(Item, Right, Path).

% Display a binary tree from top to bottom
% This program assumes that each node is just one character

show(Tree) :-

dolevels(Tree, 0, more). % Do all levels from top
dolevels(Tree, Level, alldone) :- !. % No more nodes beyond level
dolevels(Tree, Level, more) :- % Do all levels from level

traverse(Tree, Level, 0, Continue), nl, % Output nodes at Level
NextLevel is Level + 1,

dolevels(Tree, NextLevel, Continue). % Do lower levels

416 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

traverse(nil, _, -, _).

traverse(t(Left, X, Right), Level, Xdepth, Continue) :-
NextDepth is Xdepth + 1,
traverse(Left, Level, NextDepth, Continue), % Traverse left subtree

(Level = Xdepth, !, % Node X at Level?
write(X), Continue = more; % Output node, more to do
write(" ")), % Otherwise leave space

traverse(Right, Level, NextDepth, Continue). % Traverse right subtree

Chapter 10
10.1 in(Item, I(Item)). % Item found in leaf
in(Item, n2(T1, M, T2)) :- % Node has two subtrees
gt(M, Item), !, % Item not in second subtree
in(Item, T1); % Search first subtree
in(Item, T2). % Otherwise search the second

in(Item, n3(T1, M2, T2, M3, T3)) :- % Node has three subtrees

gt(M2, Item), !, % Item not in second or third
in(Item, T1); % Search first subtree

gt(M3, Item), !, % Item not in third subtree
in(Item, T2); % Search second subtree

in(Item, T3). % Search third subtree

10.3 avi(Tree) :-
avl(Tree, Height). % Tree is AVL-tree with height Height

avl(nil, 0). % Empty tree is AVL and has height 0

avl(t(Left, Root, Right), H) :-

“avl(Left, HL),
avl(Right, HR),
(HL is HR; HL is HR + 1; HLis HR - 1), % Subtrees heights almost equal
max1(HL, HR, H).

max1l(U, V, M) :- % M is 1 + max of U and V
U>V,,MisU+1;
MisV + 1.

Chapter 11

11.1 depthfirst1([Node | Path], [Node | Path]) :-
goal(Node).

depthfirst1([Node | Path], Solution) :-
s(Node, Nodel),
not member(Nodel, Path),
depthfirst1([Nodel, Node | Path], Solution).

SOLUTIONS TO SELECTED EXERCISES 417

11.6 solve(StartSet, Solution) :- % StartSet is list of start nodes
bagof([Node], member(Node, StartSet), CandidatePaths),

breadthfirst(CandidatePaths, Solution).

2-3 dictionary 234
deleting from 239
insertion into 235

2-3 tree 234
= 163
== 169
\== 169

admissibility of search
AND/OR 305
state space 273
Advice Language 0 372
implementation of 375
interpreter for 374
Advice Languages 370, 372
advice-table 372
alpha-beta algorithm 364
efficiency of 367
program for 366
ALO 372
implementation of 375
AND node 288
AND/OR best-first search 299, 306
AND/OR breadth-first search 298
AND/OR depth-first search 298
AND/OR formulation of game
playing 293
AND/OR formulation of route
finding 290, 310
AND/OR graph 286, 288
search admissibility 305
AND/OR search procedures 294
AND/OR solution tree 289
anonymous variable 30
arg 167
arithmetic in Prolog 84
arithmetic operators 85
arity 33
assert 170
asserta 172
assertz 172
atom 156
atom 7

atomic 156

atoms

constructing 149
decomposing 149

syntax of 28

automatic backtracking 24, 47
automaton, non-deterministic 99
AVL-dictionary 241

insertion into 241

AVL-tree 241

backed-up values 362
bactracking
automatic 24, 47
controlling 120
preventing 120
bagof 175
balanced tree 216
best-first search 265, 266
AND/OR 299, 306
state space 266
better-goal 370
bidirectional search 262
binary dictionary 214
deletion 219
insertion 217, 220
searching 214
binary tree 211
body of clause 10
breadth-first search 256
bubblesort 206
built-in operators
+,-, %, /,div, is, mod 85
built-in procedures
>, <, >=, =<, ==, =\= 86
! 121, 124
=.. 163

419

420 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

atom 156
atomic 156
bagof 175
call 166
consult 152
findall 176
functor 166
get 148
getd 148
integer 155
is 85
name 149
nl 140
nonvar 156
nospy 188
not 131
notrace 187

numbervars 341

put 147
read 140
reconsult 153
repeat 174
retract 170
see 138
seen 139
setof 176
spy 187
tab 140
tell 138
told 139
trace 187
ttyflush 142
var 156
write 140

call 166

categorical knowledge 317
certainty factor 347

certainty propagation 350
chess, king-rook-king ending 374

clause 4

body of 10, 13
head of 10, 13

instance of 41
variant of 41

clause form 61, 397

clause in propositional logic 397
closed-world assumption 135
combinatorial complexity 263
combinatorial explosion 263
comments in Prolog 19
comparison operators 86
compiled program 188
concatenation of lists 68
conflict resolution 392

conflict set 392

conjunction of goals 42
conjunctive normal form 397
consult 152

cryptarithmetic puzzles, program
for 161

cut 120, 124

green 134

red 134

data abstraction 97
database manipulation 169
database, Prolog 169
debugging 187
declarative meaning 24, 42
declarative reading 41
depth-first search 251
depth-first search, depth-limited 255
dictionary

2-3 234

AVL 241

binary 214

difference list 192
directed graph 224
disjunction of goals 42
div operator 85

eight puzzle 247

eight queens problem 108
end_of_file 139, 140

equality, types of 168

evaluation function in games 368
executing goals 43

expert system 314

expert system shell 315

expert systems, uncertainty in 347

facts in Prolog 13
file user 138
files in Prolog 137
files of terms 140
findall 176
first-order predicate logic 61
forcing-tree 371
functor 166
functor 31

arity of 33
principal 33

game tree 359

game playing, AND/OR formulation
of 293

games, two-person, perfect-
information 359

generalization, use of 182
get 148
get0 148
goal 7

to satisfy 19
conjunction of 42
disjunction of 42
goal is satisfiable 8

goal is unsatisfiable 8
goal logically follows 20
goal succeeds 8

goals

executing 43
executing list of 46
graph

AND/OR 286, 288
directed 224

path finding 225
graphs, representation of 224

Hamiltonian path 227
head of clause 10

head of list 64

heuristic estimates 265
heuristic pruning 369
heuristic search 263, 265
holding-goal 370
horizon effect 369

Horn clause 61

how explanation 328, 342, 356
how question 317, 328

if-then rules 316

inference engine 315
inference network 348
insertion sort 207

instance of clause 41
instantiation, most general 36
instantiation of variable 10
integer 155, 156

interpreting program 188

is operator 85

king-rook-king ending, program
for 378

knowledge base 315

knowledge-based system 314

knowledge engineering 317

list
adding to 72, 126
concatenation 68
decomposition of 69
deleting from 72

INDEX 421

difference-pair representation 192
head of 64

inserting into 73
length of 88
membership 67, 125
permutation of 75
representation of 203
sorting of 206

sublist of 73

tail of 64

list structure 64

lists in Prolog 64

logic

first-order predicate 61
propositional 397
relation to Prolog 60

main variation 362
map colouring, program for 189
matching 21, 35, 36
meaning, procedural 24, 43
meaning of Prolog
declarative 24, 42
procedural 24, 43
measure of belief 347
memoization of answers 173
minimax-based programs 368
minimax principle 361
minimax procedure 363
mod operator 85
most general instantiation 36
move-constraints 370

name 149

necessity factor 349
negation as failure 129
nl 140
non-deterministic automaton 99
nonvar 156

nospy 188

not 131

notrace 187

numbers in Prolog 29
numbervars 341

objects in Prolog 27
operator notation 78
operators
‘comparison 86
precedence of 79
predefined 82
type of 80
operators in Prolog 78
OR node 288

422 PROLOG PROGRAMMING FOR ARTIFICIAL INTELLIGENCE

path finding 224
pattern-directed module 390
pattern-directed program 390
pattern-directed programming 390,
393
pattern-directed programs, interpreter
for 394
pattern-directed systems 390
pattern-directed systems, conflict
resolution in 392
pattern-directed systems, pattern
matching in 392
permutation of list 75
piece-of-advice 370
satisfiability of 371
precedence of operators 79
predicate logic 61
principal functor 33
probabilistic knowledge 317
problem reduction 286
procedural meaning 24, 43
procedural reading 41
procedure in Prolog 19
procedures, tabular organization
of 186
programming style 179
commenting 186
rules of 184
programming techniques
debugging 187
efficiency 188
progressive deepening 369
Prolog, relation to logic 60
propositional logic 397
Prospector 347
Prospector model 347
pure Prolog 61
put 147

quicksort 208

read 140

reconsult 153

recursion 17

use of 181

recursive definition 17
repeat 174

resolution principle 61, 396
resolution step 398
resolution theorem proving 61
program for 401

retract 170

route finding, AND/OR formulation
of 290, 310

rules, if-then 316
rules in Prolog 9, 13

scheduling 278

see 138

seen 139

selector relations 97
setof 176

shell, expert system 315
soft knowledge 317
sorting lists 206
spanning tree, program for 229, 230
spy 187

state space 247
representation 247, 248
search admissibility 273
static values 362
stepwise refinement 180

stream
input 137
output 137

streams 137

structured objects 30
structured programming 181
structures in Prolog 30
subjective certainty 347
sufficiency factor 349

tab 140
tail of list 64
task scheduling 278

tell 138

term 31

copy of 174,177
ground 167

subsumption of 168
theorem prover 396

told 139

tower of Hanoi program 292
trace 187

transparency of system 317
tree

2-3 234

AVL 241

balanced 216

binary 211

displaying 222

ttyflush 142

uncertainty in expert systems 347
unification 61
user file 138

var 156

variable 7
anonymous 30
instantiation of 10
variables, syntax of 29

INDEX 423

variant of clause 41

why explanation 327
why question 317, 327
write 140

o -
e
INTERNATIONAL
COMPUTER SCIENCE

SERIES

Prolog - the logic programming language central to
Fifth Generation computers - is now recognized as a
powerful vehicle for non-numeric programming. This
book provides a detailed account of the language and
its applications in Artificial Intelligence.

Part One introduces Prolog as a practical program-
ming tool, and shows how Prolog programs are
developed. Part Two demonstrates the power of
Prolog applied in some central areas of Al, including

Problem solving and heuristic search
Expert systems

Game playing

Pattern-directed systems

Fundamental Al techniques are developed in depth
towards their implementation in Prolog, resulting in
complete Prolog programs.

The author, Ivan Bratko, leads the Al groups at the
Josef Stefan Institute and the E. Kardelj University in
Ljubljana, Yugoslavia. He is also a visiting fellow of the
Turing Institute, Glasgow, and a director of the
International School for the Synthesis of Expert
Knowledge. Professor Bratko has taught Prolog
worldwide and applied Prolog in medical expert
systems and computer chess research. This book will
be of particular interest to students, researchers and
professional programmers seeking to use Prolog for
Al applications.

A
vvy
ADDISON-WESLEY

PUBLISHING
COMPANY

ISBN 0 20114224 4

