Convolutional Neural Networks

Overview

Goal: Understand what Convolutional Neural Networks (ConvNets) are & intuition behind it. 1.Brief Motivation for Deep Learning 2.What are ConvNets? 3.ConvNets for Object Detection

First of all what is Deep Learning?

- Composition of non-linear transformation of the data.
- Goal: Learn useful representations, aka features, directly from data.

Recap: Supervised Learning

- $\{(\mathbf{x}^{i}, y^{i}), i=1...P\}$ training dataset
- x^{i} i-th input training example
- y^i i-th target label
- P number of training examples

Supervised Learning: Examples

Classification

Denoising

"2 3 4 5"

structured

Slide: M. Ranzato

OCR

Supervised Deep Learning

Classification

Denoising

OCR $2345 \rightarrow 4$ Banzato

So deep learning is about learning feature representation in a compositional manner. But wait, why learn features?

The Black Box in a Traditional Recognition Approach

Preprocessing

Feature Extraction (HOG, SIFT, etc) Post-processing (Feature selection, MKL etc) Classifier (SVM, boosting, etc)

The Black Box in a Traditional Recognition Approach

Local Constancy and Smoothness Regularization

- Implicit and explicit beliefs
- Overcome the limitations of prior beliefs (eg. local template matching)
 - Additional Beliefs
 - Composition of factors or features at multiple levels in a hierarchy

Post-processing (Feature selection, MKL etc)

- Most critical for accuracy
- Most time-consuming in development
- What is the best feature???
- What is next?? Keep on crafting better features?
- Let's learn feature representation directly from data.

Learn features and classifier together

- ⇒ Learn an end-to-end recognition system.
 A non-linear map that takes raw pixels directly to labels.
- Q: How can we build such a highly non-linear system?
- A: By combining simple building blocks we can make more and more complex systems.

Building a complicated function

Proposal #1:

Each box is a simple nonlinear function

Building a complicated function

Building a complicated function

- Composition is at the core of deep learning methods
- Each "simple function" will have parameters subject to learning Slide: M. Ranzato

Intuition behind Deep Neural Nets

Intuition behind Deep Neural Nets

NOTE: Each black box can have trainable parameters. Their composition makes a highly non-linear system.

Intuition behind Deep Neural Nets

NOTE: Each black box can have trainable parameters. Their composition makes a highly non-linear system.

The final layer outputs a probability distribution of categories.

A simple single layer Neural Network

Consists of a linear combination of input through a nonlinear function: z = Wx + b

$$a = f(z)$$

W is the weight parameter to be learned. x is the output of the previous layer f is a simple nonlinear function. Popular choice is max(x,0), called ReLu (Rectified Linear Unit)

1 layer: Graphical Representation

h is called a neuron, hidden unit or feature.

Joint training architecture overview

NOTE: Multi-layer neural nets with more than two layers are nowadays called deep nets!!

NOTE: User must specify number of layers, number of hidden units, type of layers and loss function.

A) Compute loss on small mini-batch

F-PROP

A) Compute loss on small mini-batch

F-PROP

A) Compute loss on small mini-batch

F-PROP

- A) Compute loss on small mini-batch
- B) Compute gradient w.r.t. parameters

B-PROP

- A) Compute loss on small mini-batch
- B) Compute gradient w.r.t. parameters

B-PROP

- A) Compute loss on small mini-batch
- B) Compute gradient w.r.t. parameters

B-PROP

- A) Compute loss on small mini-batch
- B) Compute gradient w.r.t. parameters
- C) Use gradient to update parameters $W \leftarrow W \eta \frac{dL}{d W}$

When the input data is an image...

When the input data is an image..

Reduce connection to local regions

67

Reuse the same kernel everywhere

Because interesting features (edges) can happen at anywhere in the image.

Detail

If the input has 3 channels (R,G,B), 3 separate k by k filter is applied to each channel.

Output of convolving 1 feature is called a *feature map*.

This is just sliding window, ex. the output of one part filter of DPM is a feature map

Using multiple filters

Each filter detects features in the output of previous layer. So to capture different features, learn multiple filters.

Example of filtering

- Convolutional
 - Translation equivariance
 Tied filter weights
 (same at each position → few parameters)

Slide: R. Fergus

Regularization for the deep learning

- Dataset Augmentation
 - Horizontal Reflexes
 - Variation in intensities

• Dropout

Building Translation Invariance via Pooling

- Pooling adds infinitely strong prior that the function the layer learns must be invariant to small translations.
- It improves the statistical efficiencey of the network
- It summarizes the responses over a whole neighborhood.
- It may handle inputs of varying size.

Activation Functions

• Sigmoid:

$$f(x) = \frac{1}{1 + exp(-x)}$$

• Hyper-tengent f(x) = tanh(x)

- ReLU $f(x) = \max(0, x)$
- Soft-Plus $log(1 + e^x)$

CONVOLUTION Layer 32x32x3 image 32 height

width

32

depth

3

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Convolution Layer

Convolution Layer

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Preview

[From recent Yann LeCun slides]

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $\circ W_2 = (W_1 F + 2P)/S + 1$
 - $\circ~H_2=(H_1-F+2P)/S+1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces F · F · D₁ weights per filter, for a total of (F · F · D₁) · K weights and K biases.
- In the output volume, the d-th depth slice (of size W₂ × H₂) is the result of performing a valid convolution
 of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

Summary of a typical convolutional layer

- Doing all of this consists one layer.
- Pooling and normalization is optional.
- Stack them up and train just like multilayer neural nets.

Final layer is usually fully connected neural net with output size == number of classes

Revisiting the composition idea

Every layer learns a feature detector by combining the output of the layer before.

 \Rightarrow More and more abstract features are learned as we stack layers.

Keep this in mind and let's look at what kind of things ConvNets learn.

Architecture of Alex Krizhevsky et al.

- 8 layers total.
- Trained on Imagenet Dataset (1000 categories, 1.2M training images, 150k test images)
- 18.2% top-5 error
 - Winner of the ILSVRC- 2012 challenge.

Slide: R. Fergus

Architecture of Alex Krizhevsky et al.

First layer filters

Showing 81 filters of 11x11x3. Capture low-level features like oriented edges, blobs.

Note these oriented edges are analogous to what SIFT uses to compute the gradients.

Top 9 patches that activate each filter

in layer 1

Each 3x3 block shows the top 9 patches for one filter.

ConvNets as generic feature extractor

- A well-trained ConvNets is an excellent feature extractor.
- Chop the network at desired layer and use the output as a feature representation to train a SVM on some other vision dataset.

	Cal-101	Cal-256
	(30/class)	(60/class)
SVM (1)	44.8 ± 0.7	24.6 ± 0.4
SVM (2)	66.2 ± 0.5	39.6 ± 0.3
SVM (3)	72.3 ± 0.4	46.0 ± 0.3
SVM (4)	76.6 ± 0.4	51.3 ± 0.1
SVM (5)	86.2 ± 0.8	65.6 ± 0.3
SVM (7)	85.5 ± 0.4	71.7 ± 0.2
Softmax (5)	82.9 ± 0.4	65.7 ± 0.5
Softmax (7)	85.4 ± 0.4	$\textbf{72.6} \pm \textbf{0.1}$

• Improve further by taking a pre-trained ConvNet and re-training it on a different dataset. Called *fine-tuning*

The Neuroscientific Basis for Convolutional Networks

- Convolutional networks are perhaps the greatest success story of biologically inspired artificial intelligence.
- Deep Learning models were based on recording the activity of individual neurons in cats by Hubel and Wiesel back in 1959. (Nobel Prize)
- Neurons in the early visual system responded most strongly to very specific patterns of light, such as percisely oriented bars.
- Geniculate-striate pathway and ventral pathway
- IT proves to be very similar to a convolutional network. CN can predict IT firing rates.

CNN & Human Vision

Preview

[From recent Yann LeCun slides]

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

CNN Resembelance with V1

- V1 is arranged in a spatial map Activation map/feature map two dimensional
- V1 contains many simple cells : detector unit (convolution+ReLU)
- V1 also contains many complex cells (complex cells are invariant to small shifts in the position of the feature): Pooling units

Library and Interfaces

- Caffe
- CNTK
- State-of-the-art (Lower Level Framework)
 - TensorFlow
 - Theano
 - Torch
- Higher Level Framework
 - Keras
 - Blocks

Thanks