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Review: Radiometry

Slide by L. Fei-Fei



Review: Shape from shading

Forsyth & Ponce, Sec. 5.4



Today: Color

• The nature of color

• Color processing in the human visual system

• Color spaces

• Adaptation and constancy

• White balance

• Uses of color in computer vision



What is color?

• Color is a psychological property of our visual 

experiences when we look at objects and lights, 

not a physical property of those objects or lights 

(S. Palmer, Vision Science: Photons to 

Phenomenology)

• Color is the result of interaction between physical 

light in the environment and our visual system

Wassily Kandinsky (1866-1944), Murnau Street with Women, 1908 



Electromagnetic spectrum

Why do we see light at these wavelengths?

Because that’s where the sun radiates electromagnetic energy

Human Luminance Sensitivity Function



The Physics of Light

Any source of light can be completely described

physically by its spectrum: the amount of energy emitted 

(per time unit) at each wavelength 400 - 700 nm.

© Stephen E. Palmer, 2002
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Some examples of the spectra of light sources
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The Physics of Light

Some examples of the reflectance spectra of surfaces
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Interaction of light and surfaces

• Observed color is the result 

of interaction of light source 

spectrum with surface 

reflectance

• Spectral radiometry
• All definitions and units are now 

“per unit wavelength”

• All terms are now “spectral”



The Eye

The human eye is a camera!
• Iris - colored annulus with radial muscles

• Pupil - the hole (aperture) whose size is controlled by the iris

• Lens - changes shape by using ciliary muscles (to focus on objects 

at different distances)

• What’s the “film”?

– photoreceptor cells (rods and cones) in the retina
Slide by Steve Seitz



Density of rods and cones

Rods and cones are non-uniformly distributed on the retina
• Rods responsible for intensity, cones responsible for color

• Fovea - Small region (1 or 2°) at the center of the visual field containing the 
highest density of cones (and no rods).

• Less visual acuity in the periphery—many rods wired to the same neuron

Slide by Steve Seitz
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Rod / Cone sensitivity

Why can’t we read in the dark?
Slide by A. Efros
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Three kinds of cones:

Physiology of Color Vision

• Ratio of L to M to S cones: approx. 10:5:1

• Almost no S cones in the center of the fovea



Color interpolation in human visual system

Scale relative

to human

photoreceptor

size:  each line

covers about 7

photoreceptors

Brewster’s colors: evidence of interpolation from 

spatially offset color samples

Source: F. Durand



Color perception

Rods and cones act as filters on the spectrum
• To get the output of a filter, multiply its response curve by the 

spectrum, integrate over all wavelengths

– Each cone yields one number

• Q:  How can we represent an entire spectrum with 3 numbers?
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Color perception

Rods and cones act as filters on the spectrum
• To get the output of a filter, multiply its response curve by the 

spectrum, integrate over all wavelengths

– Each cone yields one number

• Q:  How can we represent an entire spectrum with 3 numbers?

S

M L

Wavelength

Power        

• A:  We can’t!  Most of the information is lost.

– As a result, two different spectra may appear indistinguishable

» such spectra are known as metamers

Slide by Steve Seitz



Spectra of some real-world surfaces



Spectra of some real-world surfaces

metamers



Metamers



Standardizing color experience

• We would like to understand which spectra 

produce the same color sensation from 

people under similar viewing conditions

• Color matching experiments

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995



Color matching experiment 1

Source: W. Freeman
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Color matching experiment 1
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The primary color 
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Source: W. Freeman



Color matching experiment 2
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Color matching experiment 2
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We say a 

“negative” 

amount of p2

was needed to 

make the match, 

because we 

added it to the 

test color’s side.

The primary color 
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Trichromacy

• Three numbers seem to be sufficient for 

encoding color

• In color matching experiments, most people 

can match any given light with three primaries 
• Exception: color blindness

• For the same light and same primaries, most 

people select the same weights

• Trichromatic color theory dates back to 18th

century (Thomas Young)



Grassman’s Laws

• Additive matching is linear
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Grassman’s Laws

• Additive matching is linear

• If two test lights can be matched with the same 

set of weights, then they match each other: 
• Suppose A = u1 P1 + u2 P2 + u3 P3 and B = u1 P1 + u2 P2 + u3 P3. 

Then A = B.

• If we mix two test lights, then mixing the matches 

will match the result:
• Suppose A = u1 P1 + u2 P2 + u3 P3 and B = v1 P1 + v2 P2 + v3 P3. 

Then A+B = (u1+v1) P1 + (u2+v2) P2 + (u3+v3) P3.

• If we scale the test light, then the matches get 

scaled by the same amount:
• Suppose A = u1 P1 + u2 P2 + u3 P3. 

Then kA = (ku1) P1 + (ku2) P2 + (ku3) P3.



Linear color spaces

• Defined by a choice of three primaries 

• The coordinates of a color are given by the 

weights of the primaries used to match it

• Matching functions: weights required to 

match single-wavelength light sources

mixing two lights produces

colors that lie along a straight

line along them in color space

mixing three lights produces 

colors that lie within the triangle 

they define in color space



How to compute the color match for any color signal 

for any set of primary colors
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How to compute the color match for any color signal 

for any set of primary colors

• Pick a set of primaries,  

• Measure the amount of each primary,

needed to match a monochromatic light,               at each 

spectral wavelength     (pick some spectral step size).  

These are the color matching functions.
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Source: W. Freeman



Using color matching functions to predict the matches 

for a new spectral signal

We know that a monochromatic light 

of wavelength will be matched by the 

amounts

of each primary. 
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And any spectral signal can be thought of as a 

linear combination of very many monochromatic 

lights, with the linear coefficient given by the 

spectral power at each wavelength.

Source: W. Freeman



Using color matching functions to predict the primary 

match to a new spectral signal
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Let the new spectral signal be described by the vector t.

Then the amounts of each primary needed to 

match t are: tCe




The components e1, e2, e3 describe the color of t.  If you have 

some other spectral signal, s, and s matches t perceptually, 

then e1, e2, e3, will also match s (by Grassman’s Laws)
Source: W. Freeman



Linear color spaces: RGB

• Primaries are monochromatic lights (for 
monitors, they correspond to the three types of 
phosphors)

• Subtractive matching required for some 
wavelengths

RGB matching functions



Comparison of color matching functions with best 

3x3 transformation of cone responses

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995



Linear color spaces: CIE XYZ

• Established in 1931 by the International 
Commission on Illumination 

• Primaries are imaginary, but matching 
functions are everywhere positive

• 2D visualization: draw (x,y), where     
x = X/(X+Y+Z), y = Y/(X+Y+Z) 

Matching functions

http://www.cie.co.at/index_ie.html


Uniform color spaces

• Unfortunately, differences in x,y coordinates do not 

reflect perceptual color differences

• CIE u’v’ is a projective transform of x,y to make the 

ellipses more uniform

McAdam ellipses: Just 

noticeable differences in color



Uniform color spaces

• Unfortunately, differences in x,y coordinates do not 

reflect perceptual color differences

• CIE u’v’ is a projective transform of x,y to make the 

ellipses more uniform

• Next generation: CIE L*a*b* (Koenderink: “an awful 

mix of magical numbers and arbitrary functions that 

somehow ‘fit’ the eye measure”)



Nonlinear color spaces: HSV

• Perceptually meaningful dimensions: 

Hue, Saturation, Value (Intensity)

• RGB cube on its vertex



Color perception

• Color/lightness constancy
• The ability of the human visual system to perceive the 

intrinsic reflectance properties of the surfaces despite 

changes in illumination conditions
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Color perception

• Color/lightness constancy
• The ability of the human visual system to perceive the 

intrinsic reflectance properties of the surfaces despite 

changes in illumination conditions

• Instantaneous effects
• Simultaneous contrast: background color affects perceived 

color of the target 

• Mach bands

• Gradual effects
• Light/dark adaptation

• Chromatic adaptation

• Afterimages

• High-level effects
• Color naming



Lightness constancy

J. S. Sargent, The Daughters of Edward D. Boit, 1882 

White in 

light and in 

shadow

Slide by F. Durand



Lightness constancy

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html


Lightness constancy

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html


Lightness constancy

• Possible explanations
• Simultaneous contrast

• Reflectance edges vs. illumination edges

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html


Simultaneous contrast/Mach bands

Source: D. Forsyth



Chromatic adaptation

• The visual system changes its sensitivity 
depending on the luminances prevailing in 
the visual field
• The exact mechanism is poorly understood

• Adapting to different brightness levels
• Changing the size of the iris opening (i.e., the aperture) 

changes the amount of light that can enter the eye 

• Think of walking into a building from full sunshine

• Adapting to different color temperature
• The receptive cells on the retina change their sensitivity 

• For example: if there is an increased amount of red light, the 
cells receptive to red decrease their sensitivity until the 
scene looks white again 

• We actually adapt better in brighter scenes: This is why 
candlelit scenes still look yellow

http://www.schorsch.com/kbase/glossary/adaptation.html

http://www.schorsch.com/kbase/glossary/adaptation.html


Chromatic adaptation



Name that color

Green

Red

Blue

Yellow

Green

Red

Orange

Purple

Brown

Yellow

Black



Useful reference

Stephen E. Palmer, Vision Science: Photons 

to Phenomenology, MIT Press, 1999



White balance

• When looking at a picture on screen or print, we adapt to 

the illuminant of the room, not to that of the scene in the 

picture

• When the white balance is not correct, the picture will 

have an unnatural color “cast”

http://www.cambridgeincolour.com/tutorials/white-balance.htm

incorrect white balance correct white balance

http://www.cambridgeincolour.com/tutorials/white-balance.htm


White balance

• Film cameras: 
• Different types of film or different filters for different 

illumination conditions

• Digital cameras: 
• Automatic white balance

• White balance settings corresponding to 

several common illuminants

• Custom white balance using a reference 

object

http://www.cambridgeincolour.com/tutorials/white-balance.htm

http://www.cambridgeincolour.com/tutorials/white-balance.htm


White balance can be tricky…

• When there are several types of illuminants in the 

scene, different reference points will yield different 

results

http://www.cambridgeincolour.com/tutorials/white-balance.htm

Reference: moon Reference: stone

http://www.cambridgeincolour.com/tutorials/white-balance.htm


White balance

• Von Kries adaptation
• Multiply each channel by a gain factor

• Note that the light source could have a more complex effect, 

corresponding to an arbitrary 3x3 matrix

• Best way: gray card
• Take a picture of a neutral object  (white or gray)

• Deduce the weight of each channel

– If the object is recoded as rw, gw, bw

use weights 1/rw, 1/gw, 1/bw



White balance

• Without gray cards: we need to “guess” which 
pixels correspond to white objects
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White balance

• Without gray cards: we need to “guess” which 
pixels correspond to white objects

• Gray world assumption
• The image average rave, gave, bave is gray

• Use weights 1/rave, 1/gave, 1/bave

• Brightest pixel assumption
• Highlights usually have the color of the light source 

• Use weights inversely proportional to the values of the 
brightest pixels

• Gamut mapping
• Gamut: convex hull of all pixel colors in an image

• Find the transformation that matches the gamut of the image 
to the gamut of a “typical” image under white light

• Use image statistics, learning techniques



White balance by recognition

• Key idea: For each of the 
semantic classes present 
in the image, compute the 
illuminant that transforms 
the pixels assigned to that 
class so that the average 
color of that class 
matches the average 
color of the same class in 
a database of “typical” 
images

J. Van de Weijer, C. Schmid and J. Verbeek, Using High-Level Visual 

Information for Color Constancy, ICCV 2007.

http://lear.inrialpes.fr/people/vandeweijer/papers/iccv07.pdf


Uses of color in computer vision

Color histograms for indexing and retrieval

Swain and Ballard, Color Indexing, IJCV 1991.

http://www.inf.ed.ac.uk/teaching/courses/av/LECTURE_NOTES/swainballard91.pdf


Uses of color in computer vision

Skin detection

M. Jones and J. Rehg, Statistical Color Models with 

Application to Skin Detection, IJCV 2002.

http://www.cc.gatech.edu/~rehg/Papers/SkinDetect-IJCV.pdf


Uses of color in computer vision

Image segmentation and retrieval

C. Carson, S. Belongie, H. Greenspan, and Ji. Malik, Blobworld: 

Image segmentation using Expectation-Maximization and its 

application to image querying, ICVIS 1999.



Uses of color in computer vision

Robot soccer

M. Sridharan and P. Stone, Towards Eliminating Manual 

Color Calibration at RoboCup. RoboCup-2005: Robot 

Soccer World Cup IX, Springer Verlag, 2006

Source: K. Grauman

http://www.cs.utexas.edu/users/AustinVilla/?p=research/auto_vis


Uses of color in computer vision

Building appearance models for tracking

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their 

Appearance. PAMI 2007.

http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html


Uses of color in computer vision

Judging visual realism

J.-F. Lalonde and A. Efros. Using Color Compatibility 

for Assessing Image Realism. ICCV 2007.

http://graphics.cs.cmu.edu/projects/realismcolor/


Next time: Linear filtering and edge detection


