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Review

• Pinhole projection models
• What are vanishing points and vanishing lines?

• What is orthographic projection?

• How can we approximate orthographic projection?

• Lenses
• Why do we need lenses?

• What controls depth of field?

• What controls field of view?

• What are some kinds of lens aberrations?

• Digital cameras
• What are the two major types of sensor technologies?

• What are the different types of color sensors?



Aside: Early color photography

Sergey Prokudin-Gorsky (1863-1944)

Photographs of the Russian empire 

(1909-1916)

http://www.loc.gov/exhibits/empire/

http://en.wikipedia.org/wiki/Sergei_Mikhailovich_Prokudin-Gorskii

http://www.loc.gov/exhibits/empire/
http://en.wikipedia.org/wiki/Sergei_Mikhailovich_Prokudin-Gorskii


Today

• Radiometry: measuring light

• Surface reflectance: BRDF

• Lambertian and specular surfaces

• Shape from shading

• Photometric stereo



Radiometry

What determines the brightness of an image 

pixel?
Light source

properties

Surface 

shape

Surface reflectance

propertiesOptics

Sensor characteristics

Slide by L. Fei-Fei

Exposure



dA

Radiometry

• Radiance (L): energy carried by a ray
• Power per unit area perpendicular to the direction of travel, 

per unit solid angle

• Units: Watts per square meter per steradian  (W m-2 sr-1)

• Irradiance (E): energy arriving at a surface
• Incident power in a given direction per unit area

• Units: W m-2

• For a surface receiving radiance L(x,q,f) coming in from dw the  

corresponding irradiance is

    wqfqfq dLE cos,, 
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Solid Angle

• By analogy with angle (in radians), the solid angle 
subtended by a region at a point is the area 
projected on a unit sphere centered at that point

• The solid angle dw subtended by a patch of area dA
is given by:
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cos

r

dA
d

q
w 

A



Radiometry of thin lenses

L: Radiance emitted from P toward P’

E: Irradiance falling on P’ from the lens

What is the relationship between E and L?

Forsyth & Ponce, Sec. 4.2.3



Example: Radiometry of thin lenses
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The power δP now gets concentrated at P’, resulting in irradiance E:






 coscos
4

3

2

AL
z

d
P 










Example: Radiometry of thin lenses

cos
||

z
OP 

cos

'
|'|

z
OP 

4

2d

 
3

2

2

2

cos
4cos/

cos

4

















z

d

z

d
 cosALP 









coscos

'4'

3

2

A

A
L

z

d

A

P
E 










o

dA

dA’

Area of the lens:

Let’s compute the power δP transmitted from P to the lens:

The power δP now gets concentrated at P’, resulting in irradiance E:






 coscos
4

3

2

AL
z

d
P 










Example: Radiometry of thin lenses

cos
||

z
OP 

cos

'
|'|

z
OP 

4

2d

   22
cos/

cos

cos/'

cos'








w

z

A

z

A


 
3

2

2

2

cos
4cos/

cos

4

















z

d

z

d
 cosALP 









coscos

'4'

3

2

A

A
L

z

d

A

P
E 










o

dA

dA’

Area of the lens:

Let’s compute the power δP transmitted from P to the lens:

The power δP now gets concentrated at P’, resulting in irradiance E:






 coscos
4

3

2

AL
z

d
P 










Example: Radiometry of thin lenses

cos
||

z
OP 

cos

'
|'|

z
OP 

4

2d

   22
cos/

cos

cos/'

cos'








w

z

A

z

A


2

'cos

cos

'










z

z

A

A









 
3

2

2

2

cos
4cos/

cos

4

















z

d

z

d
 cosALP 









coscos

'4'

3

2

A

A
L

z

d

A

P
E 










o

dA

dA’

Area of the lens:

Let’s compute the power δP transmitted from P to the lens:

The power δP now gets concentrated at P’, resulting in irradiance E:






 coscos
4

3

2

AL
z

d
P 










Example: Radiometry of thin lenses

cos
||

z
OP 

cos

'
|'|

z
OP 

4

2d

   22
cos/

cos

cos/'

cos'








w

z

A

z

A


2

'cos

cos

'










z

z

A

A









 
3

2

2

2

cos
4cos/

cos

4

















z

d

z

d
 cosALP 









coscos

'4'

3

2

A

A
L

z

d

A

P
E 










L
z

d
E




















 

 4

2

cos
'4

o

dA

dA’

Area of the lens:

Let’s compute the power δP transmitted from P to the lens:

The power δP now gets concentrated at P’, resulting in irradiance E:



Radiometry of thin lenses

• Image irradiance is linearly related to scene radiance

• Irradiance is proportional to the area of the lens and 

inversely proportional to the squared distance between 

the lens and the image plane

• The irradiance falls off as the angle between the 

viewing ray and the optical axis increases
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Forsyth & Ponce, Sec. 4.2.3



Radiometry of thin lenses

• Application:
• S. B. Kang and R. Weiss, Can we calibrate a camera using an 

image of a flat, textureless Lambertian surface? ECCV 2000.

L
z

d
E




















 

 4

2

cos
'4

http://research.microsoft.com/~sbkang/publications/eccv00.pdf


The journey of the light ray

Source: S. Seitz, P. Debevec 
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The journey of the light ray

Source: S. Seitz, P. Debevec 

L
z

d
E




















 

 4

2

cos
'4

tEX 

 tEfZ 



The journey of the light ray

• Camera response function: the mapping f from 

irradiance to pixel values
• Useful if we want to estimate material properties

• Shape from shading requires irradiance

• Enables us to create high dynamic range images

Source: S. Seitz, P. Debevec 
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• Method 1: Modeling
• Carefully model every step in the pipeline

• Measure aperture, model film, digitizer, etc.

• This is really hard to get right

Slide by Steve Seitz

Recovering the camera response function
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• Method 2: Calibration
• Take pictures of several objects with known irradiance

• Measure the pixel values

• Fit a function

irradiance

pixel intensity

=                

response curve
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Recovering the camera response function

Method 3: Multiple exposures
• Consider taking images with shutter speeds 

1/1000, 1/100, 1/10, 1

• The sensor exposures in consecutive images get scaled by a 
factor of 10

• This is the same as observing values of the response 
function for a range of irradiances: f(E), f(10E), f(100E), etc.

• Can fit a function to these successive values  

For more info
• P. E. Debevec and J. Malik. Recovering High Dynamic Range Radiance 

Maps from Photographs. In SIGGRAPH 97, August 1997

response curve

Exposure (log scale)

 irradiance * time

=

pixel intensity

=                

Slide by Steve Seitz

http://www.debevec.org/Research/HDR/
http://www.siggraph.org/s97/conference/papers/


The interaction of light and matter

What happens when a light ray hits a point on an object?
• Some of the light gets absorbed

– converted to other forms of energy (e.g., heat)

• Some gets transmitted through the object

– possibly bent, through “refraction”

• Some gets reflected

– possibly in multiple directions at once

• Really complicated things can happen

– fluorescence

Slide by Steve Seitz



The interaction of light and matter

What happens when a light ray hits a point on an object?
• Some of the light gets absorbed

– converted to other forms of energy (e.g., heat)

• Some gets transmitted through the object

– possibly bent, through “refraction”

• Some gets reflected

– possibly in multiple directions at once

• Really complicated things can happen

– fluorescence

Let’s consider the case of reflection in detail
• In the most general case, a single incoming ray could be reflected in 

all directions.  How can we describe the amount of light reflected in 

each direction?

Slide by Steve Seitz



Bidirectional reflectance distribution function (BRDF)

• Model of local reflection that tells how bright a 

surface appears when viewed from one direction 

when light falls on it from another

• Definition: ratio of the radiance in the outgoing 

direction to irradiance in the incident direction

• Radiance leaving a surface in a particular direction: 

add contributions from every incoming direction
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BRDF’s can be incredibly complicated…



Diffuse reflection

• Dull, matte surfaces like chalk or latex paint

• Microfacets scatter incoming light randomly

• Light is reflected equally in all directions: BRDF is 

constant

• Albedo: fraction of incident irradiance reflected by the 

surface

• Radiosity: total power leaving the surface per unit area 

(regardless of direction)



• Viewed brightness does not depend on viewing 

direction, but it does depend on direction of 

illumination

Diffuse reflection: Lambert’s law

      xSxNxxB dd  )(

N
S

B: radiosity

ρ: albedo

N: unit normal

S: source vector (magnitude 

proportional to intensity of the source)
x



Specular reflection

• Radiation arriving along a source 

direction leaves along the specular 

direction (source direction reflected 

about normal)

• Some fraction is absorbed, some 

reflected

• On real surfaces, energy usually goes 

into a lobe of directions

• Phong model: reflected energy falls of 

with

• Lambertian + specular model: sum of 

diffuse and specular term

 qncos



Specular reflection

Moving the light source

Changing the exponent



Photometric stereo

Assume:
• A Lambertian object

• A local shading model (each point on a surface receives light 

only from sources visible at that point)

• A set of known light source directions

• A set of pictures of an object, obtained in exactly the same 

camera/object configuration but using different sources

• Orthographic projection

Goal: reconstruct object shape and albedo

Sn

???S1

S2

Forsyth & Ponce, Sec. 5.4



Surface model: Monge patch

Forsyth & Ponce, Sec. 5.4
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Image model

• Known: source vectors Sj and pixel values Ij(x,y)

• We also assume that the response function of 

the camera is a linear scaling by a factor of k

• Combine the unknown normal N(x,y) and albedo 

ρ(x,y) into one vector g, and the scaling constant 

and source vectors into another vector Vj:

Forsyth & Ponce, Sec. 5.4



Least squares problem

• Obtain least-squares solution for g(x,y)

• Since N(x,y) is the unit normal, x,y) is given by the 

magnitude of g(x,y) (and it should be less than 1)

• Finally, N(x,y) = g(x,y) / x,y)
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Forsyth & Ponce, Sec. 5.4

• For each pixel, we obtain a linear system:



Example

Recovered albedo Recovered normal field

Forsyth & Ponce, Sec. 5.4



Recall the surface is 

written as

This means the normal 

has the form:

Recovering a surface from normals - 1

If we write the known 

vector g as

Then we obtain values for 

the partial derivatives of 

the surface:
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Forsyth & Ponce, Sec. 5.4



Recovering a surface from normals - 2

Integrability: for the 

surface f to exist, the 

mixed second partial 

derivatives must be equal:

We can now recover the 

surface height at any point 

by integration along some 

path, e.g.



 g1(x, y) g3(x, y) 
y



 g2(x, y) g3(x, y) 
x



f (x, y)  fx (s, y)ds
0

x

 

fy (x,t)dt
0

y

  c

Forsyth & Ponce, Sec. 5.4

(for robustness, can take 

integrals over many 

different paths and 

average the results)

(in practice, they should 

at least be similar)



Surface recovered by integration

Forsyth & Ponce, Sec. 5.4



Limitations

• Orthographic camera model

• Simplistic reflectance and lighting model

• No shadows

• No interreflections

• No missing data

• Integration is tricky



Reconstructing surfaces with arbitrary BRDF’s

• T. Zickler, P. Belhumeur, and D. Kriegman, 

“Helmholtz Stereopsis: Exploiting Reciprocity for 

Surface Reconstruction," ECCV 2002. 

• Key idea: switch the camera and the light source

http://www.eecs.harvard.edu/~zickler/papers/HelmholtzStereopsis_eccv2002.pdf


Helmholtz stereopsis

• Let’s put the light at or

and the camera at ol

• Recall that the BRDF 

ρ(vl,vr) is the ratio of 

outgoing radiance in 

direction vl to incident 

irradiance in direction vr
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Outgoing radiance: 

proportional to observed image 

irradiance

Incident irradiance: radiance 

received from the light multiplied 

by the foreshortening (cosine) term 

and by the solid angle (1/d2) term



Helmholtz stereopsis
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Helmholtz stereopsis

• Helmholtz reciprocity: ρ(vl,vr) = ρ(vr,vl) 
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Helmholtz stereopsis
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Helmholtz stereopsis

• The expression w(d)·n = 0 provides a 

constraint both on the depth of the point and 

its normal

• We get M constraints for M light/camera pairs

• These constraints can be used for surface 

reconstruction: for example, we can search a 

range of depth values to determine which one 

best satisfies the constraints…



Example results

custom stereo rig

reciprocal stereo pairs

original image recovered depth map and normal field



Next time: Color

Phillip Otto Runge (1777-1810)


